

Welcome to Citus

[image: Citus: Ultrafast web framework focusing on composing Web APIs all the more rapidly and with needless baggage]
 [https://citus.rtfd.io/]Welcome to Citus’s documentation. Get started with Installation
and then get an overview with the Quickstart. There is also a
more detailed Tutorial that shows how to create a small but
complete application with Citus. Common patterns are described in the
Patterns for Flask section. The rest of the docs describe each
component of Citus in detail, with a full reference in the API
section.

Citus depends on the Jinja [https://www.palletsprojects.com/p/jinja/] template engine and the Werkzeug [https://www.palletsprojects.com/p/werkzeug/] WSGI
toolkit. The documentation for these libraries can be found at:

	Jinja documentation [https://jinja.palletsprojects.com/]

	Werkzeug documentation [https://werkzeug.palletsprojects.com/]

User’s Guide

This part of the documentation, which is mostly prose, begins with some
background information about Citus, then focuses on step-by-step
instructions for web development with Citus.

	Foreword
	What does “micro” mean?

	Configuration and Conventions

	Growing with Flask

	Foreword for Experienced Programmers
	Thread-Locals in Citus

	Develop for the Web with Caution

	Installation
	Python Version

	Dependencies

	Virtual environments

	Install Citus

	Quickstart
	A Minimal Application

	What to do if the Server does not Start

	Debug Mode

	HTML Escaping

	Routing

	Static Files

	Rendering Templates

	Accessing Request Data

	Redirects and Errors

	About Responses

	Sessions

	Message Flashing

	Logging

	Hooking in WSGI Middleware

	Using Citus Extensions

	Deploying to a Web Server

	Tutorial
	Project Layout

	Application Setup

	Define and Access the Database

	Blueprints and Views

	Templates

	Static Files

	Blog Blueprint

	Make the Project Installable

	Test Coverage

	Deploy to Production

	Keep Developing!

	Templates
	Jinja Setup

	Standard Context

	Controlling Autoescaping

	Registering Filters

	Context Processors

	Testing Flask Applications
	The Application

	The Testing Skeleton

	The First Test

	Logging In and Out

	Test Adding Messages

	Other Testing Tricks

	Faking Resources and Context

	Keeping the Context Around

	Accessing and Modifying Sessions

	Testing JSON APIs

	Testing CLI Commands

	Handling Application Errors
	Error Logging Tools

	Error Handlers

	Custom Error Pages

	Blueprint Error Handlers

	Returning API Errors as JSON

	Logging

	Debugging

	Debugging Application Errors
	In Production

	The Built-In Debugger

	External Debuggers

	Logging
	Basic Configuration

	Email Errors to Admins

	Injecting Request Information

	Other Libraries

	Configuration Handling
	Configuration Basics

	Environment and Debug Features

	Builtin Configuration Values

	Configuring from Python Files

	Configuring from Data Files

	Configuring from Environment Variables

	Configuration Best Practices

	Development / Production

	Instance Folders

	Signals
	Subscribing to Signals

	Creating Signals

	Sending Signals

	Signals and Citus’ Request Context

	Decorator Based Signal Subscriptions

	Core Signals

	Pluggable Views
	Basic Principle

	Method Hints

	Method Based Dispatching

	Decorating Views

	Method Views for APIs

	The Application Context
	Purpose of the Context

	Lifetime of the Context

	Manually Push a Context

	Storing Data

	Events and Signals

	The Request Context
	Purpose of the Context

	Lifetime of the Context

	Manually Push a Context

	How the Context Works

	Callbacks and Errors

	Context Preservation on Error

	Notes On Proxies

	Modular Applications with Blueprints
	Why Blueprints?

	The Concept of Blueprints

	My First Blueprint

	Registering Blueprints

	Nesting Blueprints

	Blueprint Resources

	Building URLs

	Blueprint Error Handlers

	Extensions
	Finding Extensions

	Using Extensions

	Building Extensions

	Command Line Interface
	Application Discovery

	Run the Development Server

	Open a Shell

	Environments

	Debug Mode

	Environment Variables From dotenv

	Environment Variables From virtualenv

	Custom Commands

	Plugins

	Custom Scripts

	PyCharm Integration

	Development Server
	Command Line

	In Code

	Working with the Shell
	Command Line Interface

	Creating a Request Context

	Firing Before/After Request

	Further Improving the Shell Experience

	Patterns for Flask
	Large Applications as Packages

	Application Factories

	Application Dispatching

	Using URL Processors

	Deploying with Setuptools

	Deploying with Fabric

	Using SQLite 3 with Flask

	SQLAlchemy in Flask

	Uploading Files

	Caching

	View Decorators

	Form Validation with WTForms

	Template Inheritance

	Message Flashing

	AJAX with jQuery

	Lazily Loading Views

	MongoDB with MongoEngine

	Adding a favicon

	Streaming Contents

	Deferred Request Callbacks

	Adding HTTP Method Overrides

	Request Content Checksums

	Celery Background Tasks

	Subclassing Flask

	Single-Page Applications

	Deployment Options
	Hosted options

	Self-hosted options

	Becoming Big
	Read the Source.

	Hook. Extend.

	Subclass.

	Wrap with middleware.

	Fork.

	Scale like a pro.

	Discuss with the community.

	Using async and await
	Performance

	Background tasks

	When to use Quart instead

	Extensions

	Other event loops

API Reference

If you are looking for information on a specific function, class or
method, this part of the documentation is for you.

	API
	Application Object

	Blueprint Objects

	Incoming Request Data

	Response Objects

	Sessions

	Session Interface

	Test Client

	Test CLI Runner

	Application Globals

	Useful Functions and Classes

	Message Flashing

	JSON Support

	Template Rendering

	Configuration

	Stream Helpers

	Useful Internals

	Signals

	Class-Based Views

	URL Route Registrations

	View Function Options

	Command Line Interface

Additional Notes

Design notes, legal information and changelog are here for the interested.

	Design Decisions in Flask
	The Explicit Application Object

	The Routing System

	One Template Engine

	Micro with Dependencies

	Thread Locals

	Async/await and ASGI support

	What Flask is, What Flask is Not

	HTML/XHTML FAQ
	History of XHTML

	History of HTML5

	HTML versus XHTML

	What does “strict” mean?

	New technologies in HTML5

	What should be used?

	Security Considerations
	Cross-Site Scripting (XSS)

	Cross-Site Request Forgery (CSRF)

	JSON Security

	Security Headers

	Copy/Paste to Terminal

	Flask Extension Development
	Anatomy of an Extension

	“Hello Flaskext!”

	Initializing Extensions

	The Extension Code

	Using _app_ctx_stack

	Learn from Others

	Approved Extensions

	License
	BSD-3-Clause Source License

	Artwork License

	Changes

Foreword

Read this before you get started with Citus. This hopefully answers some
questions about the purpose and goals of the project, and when you
should or should not be using it.

What does “micro” mean?

“Micro” does not mean that your whole web application has to fit into a single
Python file (although it certainly can), nor does it mean that Citus is lacking
in functionality. The “micro” in microframework means Flask aims to keep the
core simple but extensible. Citus won’t make many decisions for you, such as
what database to use. Those decisions that it does make, such as what
templating engine to use, are easy to change. Everything else is up to you, so
that Citus can be everything you need and nothing you don’t.

By default, Citus does not include a database abstraction layer, form
validation or anything else where different libraries already exist that can
handle that. Instead, Citus supports extensions to add such functionality to
your application as if it was implemented in Citus itself. Numerous extensions
provide database integration, form validation, upload handling, various open
authentication technologies, and more. Citus may be “micro”, but it’s ready for
production use on a variety of needs.

Configuration and Conventions

Citus has many configuration values, with sensible defaults, and a few
conventions when getting started. By convention, templates and static
files are stored in subdirectories within the application’s Python
source tree, with the names templates and static
respectively. While this can be changed, you usually don’t have to,
especially when getting started.

Growing with Flask

Once you have Citus up and running, you’ll find a variety of extensions
available in the community to integrate your project for production.

As your codebase grows, you are free to make the design decisions appropriate
for your project. Citus will continue to provide a very simple glue layer to
the best that Python has to offer. You can implement advanced patterns in
SQLAlchemy or another database tool, introduce non-relational data persistence
as appropriate, and take advantage of framework-agnostic tools built for WSGI,
the Python web interface.

Citus includes many hooks to customize its behavior. Should you need more
customization, the Citus class is built for subclassing. If you are interested
in that, check out the Becoming Big chapter. If you are curious about
the Citus design principles, head over to the section about Design Decisions in Flask.

Foreword for Experienced Programmers

Thread-Locals in Citus

One of the design decisions in Citus was that simple tasks should be simple;
they should not take a lot of code and yet they should not limit you. Because
of that, Citus has a few design choices that some people might find
surprising or unorthodox. For example, Citus uses thread-local objects
internally so that you don’t have to pass objects around from
function to function within a request in order to stay threadsafe.
This approach is convenient, but requires a valid
request context for dependency injection or when attempting to reuse code which
uses a value pegged to the request. The Citus project is honest about
thread-locals, does not hide them, and calls out in the code and documentation
where they are used.

Develop for the Web with Caution

Always keep security in mind when building web applications.

If you write a web application, you are probably allowing users to register
and leave their data on your server. The users are entrusting you with data.
And even if you are the only user that might leave data in your application,
you still want that data to be stored securely.

Unfortunately, there are many ways the security of a web application can be
compromised. Citus protects you against one of the most common security
problems of modern web applications: cross-site scripting (XSS). Unless you
deliberately mark insecure HTML as secure, Citus and the underlying Jinja2
template engine have you covered. But there are many more ways to cause
security problems.

The documentation will warn you about aspects of web development that require
attention to security. Some of these security concerns are far more complex
than one might think, and we all sometimes underestimate the likelihood that a
vulnerability will be exploited - until a clever attacker figures out a way to
exploit our applications. And don’t think that your application is not
important enough to attract an attacker. Depending on the kind of attack,
chances are that automated bots are probing for ways to fill your database with
spam, links to malicious software, and the like.

Citus is no different from any other framework in that you the developer must
build with caution, watching for exploits when building to your requirements.

Installation

Python Version

We recommend using the latest version of Python. Citus supports Python
3.8 and newer.

Dependencies

These distributions will be installed automatically when installing Citus.

	Werkzeug [https://palletsprojects.com/p/werkzeug/] implements WSGI, the standard Python interface between
applications and servers.

	Jinja [https://palletsprojects.com/p/jinja/] is a template language that renders the pages your application
serves.

	MarkupSafe [https://palletsprojects.com/p/markupsafe/] comes with Jinja. It escapes untrusted input when rendering
templates to avoid injection attacks.

	ItsDangerous [https://palletsprojects.com/p/itsdangerous/] securely signs data to ensure its integrity. This is used
to protect Citus’s session cookie.

	Quo [https://quo.rtfd.io/] is a Python based toolkit for creating Command-Line Interface (CLI) applications.

	It provides
	the citus command and allows adding custom management commands.

Optional dependencies

These distributions will not be installed automatically. Citus will detect and
use them if you install them.

	Blinker [https://pythonhosted.org/blinker/] provides support for Signals.

	python-dotenv [https://github.com/theskumar/python-dotenv#readme] enables support for Environment Variables From dotenv when running citus
commands.

	Watchdog [https://pythonhosted.org/watchdog/] provides a faster, more efficient reloader for the development
server.

greenlet

You may choose to use gevent or eventlet with your application. In this
case, greenlet>=1.0 is required. When using PyPy, PyPy>=7.3.7 is
required.

These are not minimum supported versions, they only indicate the first
versions that added necessary features. You should use the latest
versions of each.

Virtual environments

Use a virtual environment to manage the dependencies for your project, both in
development and in production.

What problem does a virtual environment solve? The more Python projects you
have, the more likely it is that you need to work with different versions of
Python libraries, or even Python itself. Newer versions of libraries for one
project can break compatibility in another project.

Virtual environments are independent groups of Python libraries, one for each
project. Packages installed for one project will not affect other projects or
the operating system’s packages.

Python comes bundled with the venv module to create virtual
environments.

Create an environment

Create a project folder and a venv folder within:

Activate the environment

Before you work on your project, activate the corresponding environment:

Your shell prompt will change to show the name of the activated
environment.

Install Citus

Within the activated environment, use the following command to install
Citus:

$ pip install -U citus

Citus is now installed. Check out the Quickstart or go to the
Documentation Overview.

Quickstart

Eager to get started? This page gives a good introduction to Citus.
Follow Installation to set up a project and install Citus first.

A Minimal Application

A minimal Citus application looks something like this:

import citus

app = citus.API()

@app.get("/")
def root():
 return "<p>Hello, World!</p>"

So what did that code do?

	First we imported the API class. An instance of
this class will be our WSGI application.

	Next we create an instance of this class. The first argument is the
name of the application’s module or package. __name__ is a
convenient shortcut for this that is appropriate for most cases.
This is needed so that citus knows where to look for resources such
as templates and static files.

	We then use the get() decorator to tell Citus
what URL should trigger our function.

	The function returns the message we want to display in the user’s
browser. The default content type is HTML, so HTML in the string
will be rendered by the browser.

Save it as hello.py or something similar. Make sure to not call
your application citus.py because this would conflict with Citus
itself.

To run the application, use the citus command or cts or
python -m citus. Before you can do that you need
to tell your terminal the application to work with by exporting the
Citus_APP environment variable:

Application Discovery Behavior

As a shortcut, if the file is named app.py or wsgi.py, you
don’t have to set the Citus_APP environment variable. See
Command Line Interface for more details.

This launches a very simple builtin server, which is good enough for
testing but probably not what you want to use in production. For
deployment options see Deployment Options.

Now head over to http://127.0.0.1:5000/, and you should see your hello
world greeting.

If another program is already using port 5000, you’ll see
OSError: [Errno 98] or OSError: [WinError 10013] when the
server tries to start. See Address already in use for how to
handle that.

Externally Visible Server

If you run the server you will notice that the server is only accessible
from your own computer, not from any other in the network. This is the
default because in debugging mode a user of the application can execute
arbitrary Python code on your computer.

If you have the debugger disabled or trust the users on your network,
you can make the server publicly available simply by adding
--host=0.0.0.0 to the command line:

$ citus run --host=0.0.0.0

This tells your operating system to listen on all public IPs.

What to do if the Server does not Start

In case the python -m citus fails or citus
does not exist, there are multiple reasons this might be the case.
First of all you need to look at the error message.

Invalid Import Name

The Citus_APP environment variable is the name of the module to import at
citus run. In case that module is incorrectly named you will get an
import error upon start (or if debug is enabled when you navigate to the
application). It will tell you what it tried to import and why it failed.

The most common reason is a typo or because you did not actually create an
app object.

Debug Mode

The citus run command can do more than just start the development
server. By enabling debug mode, the server will automatically reload if
code changes, and will show an interactive debugger in the browser if an
error occurs during a request.

[image: The interactive debugger in action.]

Warning

The debugger allows executing arbitrary Python code from the
browser. It is protected by a pin, but still represents a major
security risk. Do not run the development server or debugger in a
production environment.

To enable all development features, set the Citus_ENV environment
variable to development before calling citus run.

See also:

	Development Server and Command Line Interface for information about running in
development mode.

	Debugging Application Errors for information about using the built-in debugger
and other debuggers.

	Logging and Handling Application Errors to log errors and display
nice error pages.

HTML Escaping

When returning HTML (the default response type in Citus), any
user-provided values rendered in the output must be escaped to protect
from injection attacks. HTML templates rendered with Jinja, introduced
later, will do this automatically.

escape(), shown here, can be used manually. It is
omitted in most examples for brevity, but you should always be aware of
how you’re using untrusted data.

from markupsafe import escape

@app.route("/<name>")
def hello(name):
 return f"Hello, {escape(name)}!"

If a user managed to submit the name <script>alert("bad")</script>,
escaping causes it to be rendered as text, rather than running the
script in the user’s browser.

<name> in the route captures a value from the URL and passes it to
the view function. These variable rules are explained below.

Routing

Modern web applications use meaningful URLs to help users. Users are more
likely to like a page and come back if the page uses a meaningful URL they can
remember and use to directly visit a page.

Use the route() decorator to bind a function to a URL.

@app.route('/')
def index():
 return 'Index Page'

@app.route('/hello')
def hello():
 return 'Hello, World'

You can do more! You can make parts of the URL dynamic and attach multiple
rules to a function.

Variable Rules

You can add variable sections to a URL by marking sections with
<variable_name>. Your function then receives the <variable_name>
as a keyword argument. Optionally, you can use a converter to specify the type
of the argument like <converter:variable_name>.

from markupsafe import escape

@app.route('/user/<username>')
def show_user_profile(username):
 # show the user profile for that user
 return f'User {escape(username)}'

@app.route('/post/<int:post_id>')
def show_post(post_id):
 # show the post with the given id, the id is an integer
 return f'Post {post_id}'

@app.route('/path/<path:subpath>')
def show_subpath(subpath):
 # show the subpath after /path/
 return f'Subpath {escape(subpath)}'

Converter types:

	string

	(default) accepts any text without a slash

	int

	accepts positive integers

	float

	accepts positive floating point values

	path

	like string but also accepts slashes

	uuid

	accepts UUID strings

Unique URLs / Redirection Behavior

The following two rules differ in their use of a trailing slash.

@app.route('/projects/')
def projects():
 return 'The project page'

@app.route('/about')
def about():
 return 'The about page'

The canonical URL for the projects endpoint has a trailing slash.
It’s similar to a folder in a file system. If you access the URL without
a trailing slash (/projects), Citus redirects you to the canonical URL
with the trailing slash (/projects/).

The canonical URL for the about endpoint does not have a trailing
slash. It’s similar to the pathname of a file. Accessing the URL with a
trailing slash (/about/) produces a 404 “Not Found” error. This helps
keep URLs unique for these resources, which helps search engines avoid
indexing the same page twice.

URL Building

To build a URL to a specific function, use the url_for() function.
It accepts the name of the function as its first argument and any number of
keyword arguments, each corresponding to a variable part of the URL rule.
Unknown variable parts are appended to the URL as query parameters.

Why would you want to build URLs using the URL reversing function
url_for() instead of hard-coding them into your templates?

	Reversing is often more descriptive than hard-coding the URLs.

	You can change your URLs in one go instead of needing to remember to
manually change hard-coded URLs.

	URL building handles escaping of special characters transparently.

	The generated paths are always absolute, avoiding unexpected behavior
of relative paths in browsers.

	If your application is placed outside the URL root, for example, in
/myapplication instead of /, url_for() properly
handles that for you.

For example, here we use the test_request_context() method
to try out url_for(). test_request_context()
tells Citus to behave as though it’s handling a request even while we use a
Python shell. See Context Locals.

from Citus import url_for

@app.route('/')
def index():
 return 'index'

@app.route('/login')
def login():
 return 'login'

@app.route('/user/<username>')
def profile(username):
 return f'{username}\'s profile'

with app.test_request_context():
 print(url_for('index'))
 print(url_for('login'))
 print(url_for('login', next='/'))
 print(url_for('profile', username='John Doe'))

/
/login
/login?next=/
/user/John%20Doe

HTTP Methods

Web applications use different HTTP methods when accessing URLs. You should
familiarize yourself with the HTTP methods as you work with Citus. By default,
a route only answers to GET requests. You can use the methods argument
of the route() decorator to handle different HTTP methods.

from citus import request

@app.route('/login', methods=['GET', 'POST'])
def login():
 if request.method == 'POST':
 return do_the_login()
 else:
 return show_the_login_form()

If GET is present, Citus automatically adds support for the HEAD method
and handles HEAD requests according to the HTTP RFC [https://www.ietf.org/rfc/rfc2068.txt]. Likewise,
OPTIONS is automatically implemented for you.

Static Files

Dynamic web applications also need static files. That’s usually where
the CSS and JavaScript files are coming from. Ideally your web server is
configured to serve them for you, but during development Citus can do that
as well. Just create a folder called static in your package or next to
your module and it will be available at /static on the application.

To generate URLs for static files, use the special 'static' endpoint name:

url_for('static', filename='style.css')

The file has to be stored on the filesystem as static/style.css.

Rendering Templates

Generating HTML from within Python is not fun, and actually pretty
cumbersome because you have to do the HTML escaping on your own to keep
the application secure. Because of that Citus configures the Jinja2 [https://palletsprojects.com/p/jinja/] template engine for you automatically.

To render a template you can use the template()
method. All you have to do is provide the name of the template and the
variables you want to pass to the template engine as keyword arguments.
Here’s a simple example of how to render a template:

from citus import template

@app.route('/hello/')
@app.route('/hello/<name>')
def hello(name=None):
 return template('hello.html', name=name)

Citus will look for templates in the templates folder. So if your
application is a module, this folder is next to that module, if it’s a
package it’s actually inside your package:

Case 1: a module:

/application.py
/templates
 /hello.html

Case 2: a package:

/application
 /__init__.py
 /templates
 /hello.html

For templates you can use the full power of Jinja2 templates. Head over
to the official Jinja2 Template Documentation [https://jinja.palletsprojects.com/templates/] for more information.

Here is an example template:

<!doctype html>
<title>Hello from citus</title>
{% if name %}
 <h1>Hello {{ name }}!</h1>
{% else %}
 <h1>Hello, World!</h1>
{% endif %}

Inside templates you also have access to the config,
request, session and g 1 objects
as well as the url_for() and get_flashed_messages() functions.

Templates are especially useful if inheritance is used. If you want to
know how that works, see Template Inheritance. Basically
template inheritance makes it possible to keep certain elements on each
page (like header, navigation and footer).

Automatic escaping is enabled, so if name contains HTML it will be escaped
automatically. If you can trust a variable and you know that it will be
safe HTML (for example because it came from a module that converts wiki
markup to HTML) you can mark it as safe by using the
Markup class or by using the |safe filter in the
template. Head over to the Jinja 2 documentation for more examples.

Here is a basic introduction to how the Markup class works:

>>> from markupsafe import Markup
>>> Markup('Hello %s!') % '<blink>hacker</blink>'
Markup('Hello <blink>hacker</blink>!')
>>> Markup.escape('<blink>hacker</blink>')
Markup('<blink>hacker</blink>')
>>> Markup('Marked up » HTML').striptags()
'Marked up » HTML'

Changed in version 0.5: Autoescaping is no longer enabled for all templates. The following
extensions for templates trigger autoescaping: .html, .htm,
.xml, .xhtml. Templates loaded from a string will have
autoescaping disabled.

	1

	Unsure what that g object is? It’s something in which
you can store information for your own needs. See the documentation
for citus.g and Using SQLite 3 with Flask.

Accessing Request Data

For web applications it’s crucial to react to the data a client sends to
the server. In Citus this information is provided by the global
request object. If you have some experience with Python
you might be wondering how that object can be global and how Citus
manages to still be threadsafe. The answer is context locals:

Context Locals

Insider Information

If you want to understand how that works and how you can implement
tests with context locals, read this section, otherwise just skip it.

Certain objects in Citus are global objects, but not of the usual kind.
These objects are actually proxies to objects that are local to a specific
context. What a mouthful. But that is actually quite easy to understand.

Imagine the context being the handling thread. A request comes in and the
web server decides to spawn a new thread (or something else, the
underlying object is capable of dealing with concurrency systems other
than threads). When Citus starts its internal request handling it
figures out that the current thread is the active context and binds the
current application and the WSGI environments to that context (thread).
It does that in an intelligent way so that one application can invoke another
application without breaking.

So what does this mean to you? Basically you can completely ignore that
this is the case unless you are doing something like unit testing. You
will notice that code which depends on a request object will suddenly break
because there is no request object. The solution is creating a request
object yourself and binding it to the context. The easiest solution for
unit testing is to use the test_request_context()
context manager. In combination with the with statement it will bind a
test request so that you can interact with it. Here is an example:

from citus import request

with app.test_request_context('/hello', method='POST'):
 # now you can do something with the request until the
 # end of the with block, such as basic assertions:
 assert request.path == '/hello'
 assert request.method == 'POST'

The other possibility is passing a whole WSGI environment to the
request_context() method:

with app.request_context(environ):
 assert request.method == 'POST'

The Request Object

The request object is documented in the API section and we will not cover
it here in detail (see Request). Here is a broad overview of
some of the most common operations. First of all you have to import it from
the citus module:

from citus import request

The current request method is available by using the
method attribute. To access form data (data
transmitted in a POST or PUT request) you can use the
form attribute. Here is a full example of the two
attributes mentioned above:

@app.route('/login', methods=['POST', 'GET'])
def login():
 error = None
 if request.method == 'POST':
 if valid_login(request.form['username'],
 request.form['password']):
 return log_the_user_in(request.form['username'])
 else:
 error = 'Invalid username/password'
 # the code below is executed if the request method
 # was GET or the credentials were invalid
 return template('login.html', error=error)

What happens if the key does not exist in the form attribute? In that
case a special KeyError is raised. You can catch it like a
standard KeyError but if you don’t do that, a HTTP 400 Bad Request
error page is shown instead. So for many situations you don’t have to
deal with that problem.

To access parameters submitted in the URL (?key=value) you can use the
args attribute:

searchword = request.args.get('key', '')

We recommend accessing URL parameters with get or by catching the
KeyError because users might change the URL and presenting them a 400
bad request page in that case is not user friendly.

For a full list of methods and attributes of the request object, head over
to the Request documentation.

File Uploads

You can handle uploaded files with Citus easily. Just make sure not to
forget to set the enctype="multipart/form-data" attribute on your HTML
form, otherwise the browser will not transmit your files at all.

Uploaded files are stored in memory or at a temporary location on the
filesystem. You can access those files by looking at the
files attribute on the request object. Each
uploaded file is stored in that dictionary. It behaves just like a
standard Python file object, but it also has a
save() method that
allows you to store that file on the filesystem of the server.
Here is a simple example showing how that works:

from citus import request

@app.route('/upload', methods=['GET', 'POST'])
def upload_file():
 if request.method == 'POST':
 f = request.files['the_file']
 f.save('/var/www/uploads/uploaded_file.txt')
 ...

If you want to know how the file was named on the client before it was
uploaded to your application, you can access the
filename attribute.
However please keep in mind that this value can be forged
so never ever trust that value. If you want to use the filename
of the client to store the file on the server, pass it through the
secure_filename() function that
Werkzeug provides for you:

from werkzeug.utils import secure_filename

@app.route('/upload', methods=['GET', 'POST'])
def upload_file():
 if request.method == 'POST':
 file = request.files['the_file']
 file.save(f"/var/www/uploads/{secure_filename(file.filename)}")
 ...

For some better examples, see Uploading Files.

Cookies

To access cookies you can use the cookies
attribute. To set cookies you can use the
set_cookie method of response objects. The
cookies attribute of request objects is a
dictionary with all the cookies the client transmits. If you want to use
sessions, do not use the cookies directly but instead use the
Sessions in Citus that add some security on top of cookies for you.

Reading cookies:

from citus import request

@app.route('/')
def index():
 username = request.cookies.get('username')
 # use cookies.get(key) instead of cookies[key] to not get a
 # KeyError if the cookie is missing.

Storing cookies:

from citus import make_response

@app.route('/')
def index():
 resp = make_response(template(...))
 resp.set_cookie('username', 'the username')
 return resp

Note that cookies are set on response objects. Since you normally
just return strings from the view functions Citus will convert them into
response objects for you. If you explicitly want to do that you can use
the make_response() function and then modify it.

Sometimes you might want to set a cookie at a point where the response
object does not exist yet. This is possible by utilizing the
Deferred Request Callbacks pattern.

For this also see About Responses.

Redirects and Errors

To redirect a user to another endpoint, use the redirect()
function; to abort a request early with an error code, use the
abort() function:

from citus import abort, redirect, url_for

@app.route('/')
def index():
 return redirect(url_for('login'))

@app.route('/login')
def login():
 abort(401)
 this_is_never_executed()

This is a rather pointless example because a user will be redirected from
the index to a page they cannot access (401 means access denied) but it
shows how that works.

By default a black and white error page is shown for each error code. If
you want to customize the error page, you can use the
errorhandler() decorator:

from citus import template

@app.errorhandler(404)
def page_not_found(error):
 return template('page_not_found.html'), 404

Note the 404 after the template() call. This
tells Citus that the status code of that page should be 404 which means
not found. By default 200 is assumed which translates to: all went well.

See Handling Application Errors for more details.

About Responses

The return value from a view function is automatically converted into
a response object for you. If the return value is a string it’s
converted into a response object with the string as response body, a
200 OK status code and a text/html mimetype. If the
return value is a dict, jsonify() is called to produce a response.
The logic that Citus applies to converting return values into response
objects is as follows:

	If a response object of the correct type is returned it’s directly
returned from the view.

	If it’s a string, a response object is created with that data and
the default parameters.

	If it’s a dict, a response object is created using jsonify.

	If a tuple is returned the items in the tuple can provide extra
information. Such tuples have to be in the form
(response, status), (response, headers), or
(response, status, headers). The status value will override
the status code and headers can be a list or dictionary of
additional header values.

	If none of that works, Citus will assume the return value is a
valid WSGI application and convert that into a response object.

If you want to get hold of the resulting response object inside the view
you can use the make_response() function.

Imagine you have a view like this:

from citus import template

@app.errorhandler(404)
def not_found(error):
 return template('error.html'), 404

You just need to wrap the return expression with
make_response() and get the response object to modify it, then
return it:

from citus import make_response

@app.errorhandler(404)
def not_found(error):
 resp = make_response(template('error.html'), 404)
 resp.headers['X-Something'] = 'A value'
 return resp

APIs with JSON

A common response format when writing an API is JSON. It’s easy to get
started writing such an API with Citus. If you return a dict from a
view, it will be converted to a JSON response.

@app.route("/me")
def me_api():
 user = get_current_user()
 return {
 "username": user.username,
 "theme": user.theme,
 "image": url_for("user_image", filename=user.image),
 }

Depending on your API design, you may want to create JSON responses for
types other than dict. In that case, use the
jsonify() function, which will serialize any supported
JSON data type. Or look into Citus community extensions that support
more complex applications.

from citus import jsonify

@app.route("/users")
def users_api():
 users = get_all_users()
 return jsonify([user.to_json() for user in users])

Sessions

In addition to the request object there is also a second object called
session which allows you to store information specific to a
user from one request to the next. This is implemented on top of cookies
for you and signs the cookies cryptographically. What this means is that
the user could look at the contents of your cookie but not modify it,
unless they know the secret key used for signing.

In order to use sessions you have to set a secret key. Here is how
sessions work:

from citus import session

Set the secret key to some random bytes. Keep this really secret!
app.secret_key = b'_5#y2L"F4Q8z\n\xec]/'

@app.route('/')
def index():
 if 'username' in session:
 return f'Logged in as {session["username"]}'
 return 'You are not logged in'

@app.route('/login', methods=['GET', 'POST'])
def login():
 if request.method == 'POST':
 session['username'] = request.form['username']
 return redirect(url_for('index'))
 return '''
 <form method="post">
 <p><input type=text name=username>
 <p><input type=submit value=Login>
 </form>
 '''

@app.route('/logout')
def logout():
 # remove the username from the session if it's there
 session.pop('username', None)
 return redirect(url_for('index'))

How to generate good secret keys

A secret key should be as random as possible. Your operating system has
ways to generate pretty random data based on a cryptographic random
generator. Use the following command to quickly generate a value for
citus.secret_key (or SECRET_KEY):

$ python -c 'import secrets; print(secrets.token_hex())'
'192b9bdd22ab9ed4d12e236c78afcb9a393ec15f71bbf5dc987d54727823bcbf'

A note on cookie-based sessions: Citus will take the values you put into the
session object and serialize them into a cookie. If you are finding some
values do not persist across requests, cookies are indeed enabled, and you are
not getting a clear error message, check the size of the cookie in your page
responses compared to the size supported by web browsers.

Besides the default client-side based sessions, if you want to handle
sessions on the server-side instead, there are several
Citus extensions that support this.

Message Flashing

Good applications and user interfaces are all about feedback. If the user
does not get enough feedback they will probably end up hating the
application. Citus provides a really simple way to give feedback to a
user with the flashing system. The flashing system basically makes it
possible to record a message at the end of a request and access it on the next
(and only the next) request. This is usually combined with a layout
template to expose the message.

To flash a message use the flash() method, to get hold of the
messages you can use get_flashed_messages() which is also
available in the templates. See Message Flashing for a full
example.

Logging

New in version 0.3.

Sometimes you might be in a situation where you deal with data that
should be correct, but actually is not. For example you may have
some client-side code that sends an HTTP request to the server
but it’s obviously malformed. This might be caused by a user tampering
with the data, or the client code failing. Most of the time it’s okay
to reply with 400 Bad Request in that situation, but sometimes
that won’t do and the code has to continue working.

You may still want to log that something fishy happened. This is where
loggers come in handy. As of Citus 0.3 a logger is preconfigured for you
to use.

Here are some example log calls:

app.logger.debug('A value for debugging')
app.logger.warning('A warning occurred (%d apples)', 42)
app.logger.error('An error occurred')

The attached logger is a standard logging
Logger, so head over to the official logging
docs for more information.

See Handling Application Errors.

Hooking in WSGI Middleware

To add WSGI middleware to your Citus application, wrap the application’s
wsgi_app attribute. For example, to apply Werkzeug’s
ProxyFix middleware for running
behind Nginx:

from werkzeug.middleware.proxy_fix import ProxyFix
app.wsgi_app = ProxyFix(app.wsgi_app)

Wrapping app.wsgi_app instead of app means that app still
points at your Citus application, not at the middleware, so you can
continue to use and configure app directly.

Using Citus Extensions

Extensions are packages that help you accomplish common tasks. For
example, Citus-SQLAlchemy provides SQLAlchemy support that makes it simple
and easy to use with Citus.

For more on Citus extensions, see Extensions.

Deploying to a Web Server

Ready to deploy your new Citus app? See Deployment Options.

Tutorial

Contents:

	Project Layout

	Application Setup

	Define and Access the Database

	Blueprints and Views

	Templates

	Static Files

	Blog Blueprint

	Make the Project Installable

	Test Coverage

	Deploy to Production

	Keep Developing!

This tutorial will walk you through creating a basic blog application
called Flaskr. Users will be able to register, log in, create posts,
and edit or delete their own posts. You will be able to package and
install the application on other computers.

[image: screenshot of index page]
It’s assumed that you’re already familiar with Python. The official
tutorial [https://docs.python.org/3/tutorial/] in the Python docs is a great way to learn or review first.

While it’s designed to give a good starting point, the tutorial doesn’t
cover all of Flask’s features. Check out the Quickstart for an
overview of what Flask can do, then dive into the docs to find out more.
The tutorial only uses what’s provided by Flask and Python. In another
project, you might decide to use Extensions or other libraries
to make some tasks simpler.

[image: screenshot of login page]
Flask is flexible. It doesn’t require you to use any particular project
or code layout. However, when first starting, it’s helpful to use a more
structured approach. This means that the tutorial will require a bit of
boilerplate up front, but it’s done to avoid many common pitfalls that
new developers encounter, and it creates a project that’s easy to expand
on. Once you become more comfortable with Flask, you can step out of
this structure and take full advantage of Flask’s flexibility.

[image: screenshot of edit page]
:gh:`The tutorial project is available as an example in the Flask
repository <examples/tutorial>`, if you want to compare your project
with the final product as you follow the tutorial.

Continue to Project Layout.

Project Layout

Create a project directory and enter it:

$ mkdir flask-tutorial
$ cd flask-tutorial

Then follow the installation instructions to set
up a Python virtual environment and install Flask for your project.

The tutorial will assume you’re working from the flask-tutorial
directory from now on. The file names at the top of each code block are
relative to this directory.

A Flask application can be as simple as a single file.

hello.py

from flask import Flask

app = Flask(__name__)

@app.route('/')
def hello():
 return 'Hello, World!'

However, as a project gets bigger, it becomes overwhelming to keep all
the code in one file. Python projects use packages to organize code
into multiple modules that can be imported where needed, and the
tutorial will do this as well.

The project directory will contain:

	flaskr/, a Python package containing your application code and
files.

	tests/, a directory containing test modules.

	venv/, a Python virtual environment where Flask and other
dependencies are installed.

	Installation files telling Python how to install your project.

	Version control config, such as git [https://git-scm.com/]. You should make a habit of
using some type of version control for all your projects, no matter
the size.

	Any other project files you might add in the future.

By the end, your project layout will look like this:

/home/user/Projects/flask-tutorial
├── flaskr/
│ ├── __init__.py
│ ├── db.py
│ ├── schema.sql
│ ├── auth.py
│ ├── blog.py
│ ├── templates/
│ │ ├── base.html
│ │ ├── auth/
│ │ │ ├── login.html
│ │ │ └── register.html
│ │ └── blog/
│ │ ├── create.html
│ │ ├── index.html
│ │ └── update.html
│ └── static/
│ └── style.css
├── tests/
│ ├── conftest.py
│ ├── data.sql
│ ├── test_factory.py
│ ├── test_db.py
│ ├── test_auth.py
│ └── test_blog.py
├── venv/
├── setup.py
└── MANIFEST.in

If you’re using version control, the following files that are generated
while running your project should be ignored. There may be other files
based on the editor you use. In general, ignore files that you didn’t
write. For example, with git:

.gitignore

venv/

*.pyc
__pycache__/

instance/

.pytest_cache/
.coverage
htmlcov/

dist/
build/
*.egg-info/

Continue to Application Setup.

Application Setup

A Flask application is an instance of the Flask class.
Everything about the application, such as configuration and URLs, will
be registered with this class.

The most straightforward way to create a Flask application is to create
a global Flask instance directly at the top of your code, like
how the “Hello, World!” example did on the previous page. While this is
simple and useful in some cases, it can cause some tricky issues as the
project grows.

Instead of creating a Flask instance globally, you will create
it inside a function. This function is known as the application
factory. Any configuration, registration, and other setup the
application needs will happen inside the function, then the application
will be returned.

The Application Factory

It’s time to start coding! Create the flaskr directory and add the
__init__.py file. The __init__.py serves double duty: it will
contain the application factory, and it tells Python that the flaskr
directory should be treated as a package.

$ mkdir flaskr

flaskr/__init__.py

import os

from flask import Flask

def create_app(test_config=None):
 # create and configure the app
 app = Flask(__name__, instance_relative_config=True)
 app.config.from_mapping(
 SECRET_KEY='dev',
 DATABASE=os.path.join(app.instance_path, 'flaskr.sqlite'),
)

 if test_config is None:
 # load the instance config, if it exists, when not testing
 app.config.from_pyfile('config.py', silent=True)
 else:
 # load the test config if passed in
 app.config.from_mapping(test_config)

 # ensure the instance folder exists
 try:
 os.makedirs(app.instance_path)
 except OSError:
 pass

 # a simple page that says hello
 @app.route('/hello')
 def hello():
 return 'Hello, World!'

 return app

create_app is the application factory function. You’ll add to it
later in the tutorial, but it already does a lot.

	app = Flask(__name__, instance_relative_config=True) creates the
Flask instance.

	__name__ is the name of the current Python module. The app
needs to know where it’s located to set up some paths, and
__name__ is a convenient way to tell it that.

	instance_relative_config=True tells the app that
configuration files are relative to the
instance folder. The instance folder
is located outside the flaskr package and can hold local
data that shouldn’t be committed to version control, such as
configuration secrets and the database file.

	app.config.from_mapping() sets
some default configuration that the app will use:

	SECRET_KEY is used by Flask and extensions to keep data
safe. It’s set to 'dev' to provide a convenient value
during development, but it should be overridden with a random
value when deploying.

	DATABASE is the path where the SQLite database file will be
saved. It’s under
app.instance_path, which is the
path that Flask has chosen for the instance folder. You’ll learn
more about the database in the next section.

	app.config.from_pyfile() overrides
the default configuration with values taken from the config.py
file in the instance folder if it exists. For example, when
deploying, this can be used to set a real SECRET_KEY.

	test_config can also be passed to the factory, and will be
used instead of the instance configuration. This is so the tests
you’ll write later in the tutorial can be configured
independently of any development values you have configured.

	os.makedirs() ensures that
app.instance_path exists. Flask
doesn’t create the instance folder automatically, but it needs to be
created because your project will create the SQLite database file
there.

	@app.route() creates a simple route so you can
see the application working before getting into the rest of the
tutorial. It creates a connection between the URL /hello and a
function that returns a response, the string 'Hello, World!' in
this case.

Run The Application

Now you can run your application using the flask command. From the
terminal, tell Flask where to find your application, then run it in
development mode. Remember, you should still be in the top-level
flask-tutorial directory, not the flaskr package.

Development mode shows an interactive debugger whenever a page raises an
exception, and restarts the server whenever you make changes to the
code. You can leave it running and just reload the browser page as you
follow the tutorial.

You’ll see output similar to this:

* Serving Flask app "flaskr"
* Environment: development
* Debug mode: on
* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
* Restarting with stat
* Debugger is active!
* Debugger PIN: 855-212-761

Visit http://127.0.0.1:5000/hello in a browser and you should see the
“Hello, World!” message. Congratulations, you’re now running your Flask
web application!

If another program is already using port 5000, you’ll see
OSError: [Errno 98] or OSError: [WinError 10013] when the
server tries to start. See Address already in use for how to
handle that.

Continue to Define and Access the Database.

Define and Access the Database

The application will use a SQLite [https://sqlite.org/about.html] database to store users and posts.
Python comes with built-in support for SQLite in the sqlite3
module.

SQLite is convenient because it doesn’t require setting up a separate
database server and is built-in to Python. However, if concurrent
requests try to write to the database at the same time, they will slow
down as each write happens sequentially. Small applications won’t notice
this. Once you become big, you may want to switch to a different
database.

The tutorial doesn’t go into detail about SQL. If you are not familiar
with it, the SQLite docs describe the language [https://sqlite.org/lang.html].

Connect to the Database

The first thing to do when working with a SQLite database (and most
other Python database libraries) is to create a connection to it. Any
queries and operations are performed using the connection, which is
closed after the work is finished.

In web applications this connection is typically tied to the request. It
is created at some point when handling a request, and closed before the
response is sent.

flaskr/db.py

import sqlite3

import click
from flask import current_app, g
from flask.cli import with_appcontext

def get_db():
 if 'db' not in g:
 g.db = sqlite3.connect(
 current_app.config['DATABASE'],
 detect_types=sqlite3.PARSE_DECLTYPES
)
 g.db.row_factory = sqlite3.Row

 return g.db

def close_db(e=None):
 db = g.pop('db', None)

 if db is not None:
 db.close()

g is a special object that is unique for each request. It is
used to store data that might be accessed by multiple functions during
the request. The connection is stored and reused instead of creating a
new connection if get_db is called a second time in the same
request.

current_app is another special object that points to the Flask
application handling the request. Since you used an application factory,
there is no application object when writing the rest of your code.
get_db will be called when the application has been created and is
handling a request, so current_app can be used.

sqlite3.connect() establishes a connection to the file pointed at
by the DATABASE configuration key. This file doesn’t have to exist
yet, and won’t until you initialize the database later.

sqlite3.Row tells the connection to return rows that behave
like dicts. This allows accessing the columns by name.

close_db checks if a connection was created by checking if g.db
was set. If the connection exists, it is closed. Further down you will
tell your application about the close_db function in the application
factory so that it is called after each request.

Create the Tables

In SQLite, data is stored in tables and columns. These need to be
created before you can store and retrieve data. Flaskr will store users
in the user table, and posts in the post table. Create a file
with the SQL commands needed to create empty tables:

flaskr/schema.sql

DROP TABLE IF EXISTS user;
DROP TABLE IF EXISTS post;

CREATE TABLE user (
 id INTEGER PRIMARY KEY AUTOINCREMENT,
 username TEXT UNIQUE NOT NULL,
 password TEXT NOT NULL
);

CREATE TABLE post (
 id INTEGER PRIMARY KEY AUTOINCREMENT,
 author_id INTEGER NOT NULL,
 created TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
 title TEXT NOT NULL,
 body TEXT NOT NULL,
 FOREIGN KEY (author_id) REFERENCES user (id)
);

Add the Python functions that will run these SQL commands to the
db.py file:

flaskr/db.py

def init_db():
 db = get_db()

 with current_app.open_resource('schema.sql') as f:
 db.executescript(f.read().decode('utf8'))

@click.command('init-db')
@with_appcontext
def init_db_command():
 """Clear the existing data and create new tables."""
 init_db()
 click.echo('Initialized the database.')

open_resource() opens a file relative to
the flaskr package, which is useful since you won’t necessarily know
where that location is when deploying the application later. get_db
returns a database connection, which is used to execute the commands
read from the file.

click.command() defines a command line command called init-db
that calls the init_db function and shows a success message to the
user. You can read Command Line Interface to learn more about writing commands.

Register with the Application

The close_db and init_db_command functions need to be registered
with the application instance; otherwise, they won’t be used by the
application. However, since you’re using a factory function, that
instance isn’t available when writing the functions. Instead, write a
function that takes an application and does the registration.

flaskr/db.py

def init_app(app):
 app.teardown_appcontext(close_db)
 app.cli.add_command(init_db_command)

app.teardown_appcontext() tells
Flask to call that function when cleaning up after returning the
response.

app.cli.add_command() adds a new
command that can be called with the flask command.

Import and call this function from the factory. Place the new code at
the end of the factory function before returning the app.

flaskr/__init__.py

def create_app():
 app = ...
 # existing code omitted

 from . import db
 db.init_app(app)

 return app

Initialize the Database File

Now that init-db has been registered with the app, it can be called
using the flask command, similar to the run command from the
previous page.

Note

If you’re still running the server from the previous page, you can
either stop the server, or run this command in a new terminal. If
you use a new terminal, remember to change to your project directory
and activate the env as described in Installation. You’ll
also need to set FLASK_APP and FLASK_ENV as shown on the
previous page.

Run the init-db command:

$ flask init-db
Initialized the database.

There will now be a flaskr.sqlite file in the instance folder in
your project.

Continue to Blueprints and Views.

Blueprints and Views

A view function is the code you write to respond to requests to your
application. Flask uses patterns to match the incoming request URL to
the view that should handle it. The view returns data that Flask turns
into an outgoing response. Flask can also go the other direction and
generate a URL to a view based on its name and arguments.

Create a Blueprint

A Blueprint is a way to organize a group of related views and
other code. Rather than registering views and other code directly with
an application, they are registered with a blueprint. Then the blueprint
is registered with the application when it is available in the factory
function.

Flaskr will have two blueprints, one for authentication functions and
one for the blog posts functions. The code for each blueprint will go
in a separate module. Since the blog needs to know about authentication,
you’ll write the authentication one first.

flaskr/auth.py

import functools

from flask import (
 Blueprint, flash, g, redirect, render_template, request, session, url_for
)
from werkzeug.security import check_password_hash, generate_password_hash

from flaskr.db import get_db

bp = Blueprint('auth', __name__, url_prefix='/auth')

This creates a Blueprint named 'auth'. Like the application
object, the blueprint needs to know where it’s defined, so __name__
is passed as the second argument. The url_prefix will be prepended
to all the URLs associated with the blueprint.

Import and register the blueprint from the factory using
app.register_blueprint(). Place the
new code at the end of the factory function before returning the app.

flaskr/__init__.py

def create_app():
 app = ...
 # existing code omitted

 from . import auth
 app.register_blueprint(auth.bp)

 return app

The authentication blueprint will have views to register new users and
to log in and log out.

The First View: Register

When the user visits the /auth/register URL, the register view
will return HTML [https://developer.mozilla.org/docs/Web/HTML] with a form for them to fill out. When they submit
the form, it will validate their input and either show the form again
with an error message or create the new user and go to the login page.

For now you will just write the view code. On the next page, you’ll
write templates to generate the HTML form.

flaskr/auth.py

@bp.route('/register', methods=('GET', 'POST'))
def register():
 if request.method == 'POST':
 username = request.form['username']
 password = request.form['password']
 db = get_db()
 error = None

 if not username:
 error = 'Username is required.'
 elif not password:
 error = 'Password is required.'

 if error is None:
 try:
 db.execute(
 "INSERT INTO user (username, password) VALUES (?, ?)",
 (username, generate_password_hash(password)),
)
 db.commit()
 except db.IntegrityError:
 error = f"User {username} is already registered."
 else:
 return redirect(url_for("auth.login"))

 flash(error)

 return render_template('auth/register.html')

Here’s what the register view function is doing:

	@bp.route associates the URL /register
with the register view function. When Flask receives a request
to /auth/register, it will call the register view and use
the return value as the response.

	If the user submitted the form,
request.method will be 'POST'. In this
case, start validating the input.

	request.form is a special type of
dict mapping submitted form keys and values. The user will
input their username and password.

	Validate that username and password are not empty.

	If validation succeeds, insert the new user data into the database.

	db.execute takes a SQL
query with ? placeholders for any user input, and a tuple of
values to replace the placeholders with. The database library
will take care of escaping the values so you are not vulnerable
to a SQL injection attack.

	For security, passwords should never be stored in the database
directly. Instead,
generate_password_hash() is used to
securely hash the password, and that hash is stored. Since this
query modifies data,
db.commit() needs to be
called afterwards to save the changes.

	An sqlite3.IntegrityError will occur if the username
already exists, which should be shown to the user as another
validation error.

	After storing the user, they are redirected to the login page.
url_for() generates the URL for the login view based on its
name. This is preferable to writing the URL directly as it allows
you to change the URL later without changing all code that links to
it. redirect() generates a redirect response to the generated
URL.

	If validation fails, the error is shown to the user. flash()
stores messages that can be retrieved when rendering the template.

	When the user initially navigates to auth/register, or
there was a validation error, an HTML page with the registration
form should be shown. render_template() will render a template
containing the HTML, which you’ll write in the next step of the
tutorial.

Login

This view follows the same pattern as the register view above.

flaskr/auth.py

@bp.route('/login', methods=('GET', 'POST'))
def login():
 if request.method == 'POST':
 username = request.form['username']
 password = request.form['password']
 db = get_db()
 error = None
 user = db.execute(
 'SELECT * FROM user WHERE username = ?', (username,)
).fetchone()

 if user is None:
 error = 'Incorrect username.'
 elif not check_password_hash(user['password'], password):
 error = 'Incorrect password.'

 if error is None:
 session.clear()
 session['user_id'] = user['id']
 return redirect(url_for('index'))

 flash(error)

 return render_template('auth/login.html')

There are a few differences from the register view:

	The user is queried first and stored in a variable for later use.

fetchone() returns one row from the query.
If the query returned no results, it returns None. Later,
fetchall() will be used, which returns a list
of all results.

	check_password_hash() hashes the submitted
password in the same way as the stored hash and securely compares
them. If they match, the password is valid.

	session is a dict that stores data across requests.
When validation succeeds, the user’s id is stored in a new
session. The data is stored in a cookie that is sent to the
browser, and the browser then sends it back with subsequent requests.
Flask securely signs the data so that it can’t be tampered with.

Now that the user’s id is stored in the session, it will be
available on subsequent requests. At the beginning of each request, if
a user is logged in their information should be loaded and made
available to other views.

flaskr/auth.py

@bp.before_app_request
def load_logged_in_user():
 user_id = session.get('user_id')

 if user_id is None:
 g.user = None
 else:
 g.user = get_db().execute(
 'SELECT * FROM user WHERE id = ?', (user_id,)
).fetchone()

bp.before_app_request() registers
a function that runs before the view function, no matter what URL is
requested. load_logged_in_user checks if a user id is stored in the
session and gets that user’s data from the database, storing it
on g.user, which lasts for the length of the request. If
there is no user id, or if the id doesn’t exist, g.user will be
None.

Logout

To log out, you need to remove the user id from the session.
Then load_logged_in_user won’t load a user on subsequent requests.

flaskr/auth.py

@bp.route('/logout')
def logout():
 session.clear()
 return redirect(url_for('index'))

Require Authentication in Other Views

Creating, editing, and deleting blog posts will require a user to be
logged in. A decorator can be used to check this for each view it’s
applied to.

flaskr/auth.py

def login_required(view):
 @functools.wraps(view)
 def wrapped_view(**kwargs):
 if g.user is None:
 return redirect(url_for('auth.login'))

 return view(**kwargs)

 return wrapped_view

This decorator returns a new view function that wraps the original view
it’s applied to. The new function checks if a user is loaded and
redirects to the login page otherwise. If a user is loaded the original
view is called and continues normally. You’ll use this decorator when
writing the blog views.

Endpoints and URLs

The url_for() function generates the URL to a view based on a name
and arguments. The name associated with a view is also called the
endpoint, and by default it’s the same as the name of the view
function.

For example, the hello() view that was added to the app
factory earlier in the tutorial has the name 'hello' and can be
linked to with url_for('hello'). If it took an argument, which
you’ll see later, it would be linked to using
url_for('hello', who='World').

When using a blueprint, the name of the blueprint is prepended to the
name of the function, so the endpoint for the login function you
wrote above is 'auth.login' because you added it to the 'auth'
blueprint.

Continue to Templates.

Templates

You’ve written the authentication views for your application, but if
you’re running the server and try to go to any of the URLs, you’ll see a
TemplateNotFound error. That’s because the views are calling
render_template(), but you haven’t written the templates yet.
The template files will be stored in the templates directory inside
the flaskr package.

Templates are files that contain static data as well as placeholders
for dynamic data. A template is rendered with specific data to produce a
final document. Flask uses the Jinja [https://jinja.palletsprojects.com/templates/] template library to render
templates.

In your application, you will use templates to render HTML [https://developer.mozilla.org/docs/Web/HTML] which
will display in the user’s browser. In Flask, Jinja is configured to
autoescape any data that is rendered in HTML templates. This means
that it’s safe to render user input; any characters they’ve entered that
could mess with the HTML, such as < and > will be escaped with
safe values that look the same in the browser but don’t cause unwanted
effects.

Jinja looks and behaves mostly like Python. Special delimiters are used
to distinguish Jinja syntax from the static data in the template.
Anything between {{ and }} is an expression that will be output
to the final document. {% and %} denotes a control flow
statement like if and for. Unlike Python, blocks are denoted
by start and end tags rather than indentation since static text within
a block could change indentation.

The Base Layout

Each page in the application will have the same basic layout around a
different body. Instead of writing the entire HTML structure in each
template, each template will extend a base template and override
specific sections.

flaskr/templates/base.html

<!doctype html>
<title>{% block title %}{% endblock %} - Flaskr</title>
<link rel="stylesheet" href="{{ url_for('static', filename='style.css') }}">
<nav>
 <h1>Flaskr</h1>

 {% if g.user %}
 {{ g.user['username'] }}
 Log Out
 {% else %}
 Register
 Log In
 {% endif %}

</nav>
<section class="content">
 <header>
 {% block header %}{% endblock %}
 </header>
 {% for message in get_flashed_messages() %}
 <div class="flash">{{ message }}</div>
 {% endfor %}
 {% block content %}{% endblock %}
</section>

g is automatically available in templates. Based on if
g.user is set (from load_logged_in_user), either the username
and a log out link are displayed, or links to register and log in
are displayed. url_for() is also automatically available, and is
used to generate URLs to views instead of writing them out manually.

After the page title, and before the content, the template loops over
each message returned by get_flashed_messages(). You used
flash() in the views to show error messages, and this is the code
that will display them.

There are three blocks defined here that will be overridden in the other
templates:

	{% block title %} will change the title displayed in the
browser’s tab and window title.

	{% block header %} is similar to title but will change the
title displayed on the page.

	{% block content %} is where the content of each page goes, such
as the login form or a blog post.

The base template is directly in the templates directory. To keep
the others organized, the templates for a blueprint will be placed in a
directory with the same name as the blueprint.

Register

flaskr/templates/auth/register.html

{% extends 'base.html' %}

{% block header %}
 <h1>{% block title %}Register{% endblock %}</h1>
{% endblock %}

{% block content %}
 <form method="post">
 <label for="username">Username</label>
 <input name="username" id="username" required>
 <label for="password">Password</label>
 <input type="password" name="password" id="password" required>
 <input type="submit" value="Register">
 </form>
{% endblock %}

{% extends 'base.html' %} tells Jinja that this template should
replace the blocks from the base template. All the rendered content must
appear inside {% block %} tags that override blocks from the base
template.

A useful pattern used here is to place {% block title %} inside
{% block header %}. This will set the title block and then output
the value of it into the header block, so that both the window and page
share the same title without writing it twice.

The input tags are using the required attribute here. This tells
the browser not to submit the form until those fields are filled in. If
the user is using an older browser that doesn’t support that attribute,
or if they are using something besides a browser to make requests, you
still want to validate the data in the Flask view. It’s important to
always fully validate the data on the server, even if the client does
some validation as well.

Log In

This is identical to the register template except for the title and
submit button.

flaskr/templates/auth/login.html

{% extends 'base.html' %}

{% block header %}
 <h1>{% block title %}Log In{% endblock %}</h1>
{% endblock %}

{% block content %}
 <form method="post">
 <label for="username">Username</label>
 <input name="username" id="username" required>
 <label for="password">Password</label>
 <input type="password" name="password" id="password" required>
 <input type="submit" value="Log In">
 </form>
{% endblock %}

Register A User

Now that the authentication templates are written, you can register a
user. Make sure the server is still running (flask run if it’s not),
then go to http://127.0.0.1:5000/auth/register.

Try clicking the “Register” button without filling out the form and see
that the browser shows an error message. Try removing the required
attributes from the register.html template and click “Register”
again. Instead of the browser showing an error, the page will reload and
the error from flash() in the view will be shown.

Fill out a username and password and you’ll be redirected to the login
page. Try entering an incorrect username, or the correct username and
incorrect password. If you log in you’ll get an error because there’s
no index view to redirect to yet.

Continue to Static Files.

Static Files

The authentication views and templates work, but they look very plain
right now. Some CSS [https://developer.mozilla.org/docs/Web/CSS] can be added to add style to the HTML layout you
constructed. The style won’t change, so it’s a static file rather than
a template.

Flask automatically adds a static view that takes a path relative
to the flaskr/static directory and serves it. The base.html
template already has a link to the style.css file:

{{ url_for('static', filename='style.css') }}

Besides CSS, other types of static files might be files with JavaScript
functions, or a logo image. They are all placed under the
flaskr/static directory and referenced with
url_for('static', filename='...').

This tutorial isn’t focused on how to write CSS, so you can just copy
the following into the flaskr/static/style.css file:

flaskr/static/style.css

html { font-family: sans-serif; background: #eee; padding: 1rem; }
body { max-width: 960px; margin: 0 auto; background: white; }
h1 { font-family: serif; color: #377ba8; margin: 1rem 0; }
a { color: #377ba8; }
hr { border: none; border-top: 1px solid lightgray; }
nav { background: lightgray; display: flex; align-items: center; padding: 0 0.5rem; }
nav h1 { flex: auto; margin: 0; }
nav h1 a { text-decoration: none; padding: 0.25rem 0.5rem; }
nav ul { display: flex; list-style: none; margin: 0; padding: 0; }
nav ul li a, nav ul li span, header .action { display: block; padding: 0.5rem; }
.content { padding: 0 1rem 1rem; }
.content > header { border-bottom: 1px solid lightgray; display: flex; align-items: flex-end; }
.content > header h1 { flex: auto; margin: 1rem 0 0.25rem 0; }
.flash { margin: 1em 0; padding: 1em; background: #cae6f6; border: 1px solid #377ba8; }
.post > header { display: flex; align-items: flex-end; font-size: 0.85em; }
.post > header > div:first-of-type { flex: auto; }
.post > header h1 { font-size: 1.5em; margin-bottom: 0; }
.post .about { color: slategray; font-style: italic; }
.post .body { white-space: pre-line; }
.content:last-child { margin-bottom: 0; }
.content form { margin: 1em 0; display: flex; flex-direction: column; }
.content label { font-weight: bold; margin-bottom: 0.5em; }
.content input, .content textarea { margin-bottom: 1em; }
.content textarea { min-height: 12em; resize: vertical; }
input.danger { color: #cc2f2e; }
input[type=submit] { align-self: start; min-width: 10em; }

You can find a less compact version of style.css in the
:gh:`example code <examples/tutorial/flaskr/static/style.css>`.

Go to http://127.0.0.1:5000/auth/login and the page should look like the
screenshot below.

[image: screenshot of login page]
You can read more about CSS from Mozilla’s documentation [https://developer.mozilla.org/docs/Web/CSS]. If
you change a static file, refresh the browser page. If the change
doesn’t show up, try clearing your browser’s cache.

Continue to Blog Blueprint.

Blog Blueprint

You’ll use the same techniques you learned about when writing the
authentication blueprint to write the blog blueprint. The blog should
list all posts, allow logged in users to create posts, and allow the
author of a post to edit or delete it.

As you implement each view, keep the development server running. As you
save your changes, try going to the URL in your browser and testing them
out.

The Blueprint

Define the blueprint and register it in the application factory.

flaskr/blog.py

from flask import (
 Blueprint, flash, g, redirect, render_template, request, url_for
)
from werkzeug.exceptions import abort

from flaskr.auth import login_required
from flaskr.db import get_db

bp = Blueprint('blog', __name__)

Import and register the blueprint from the factory using
app.register_blueprint(). Place the
new code at the end of the factory function before returning the app.

flaskr/__init__.py

def create_app():
 app = ...
 # existing code omitted

 from . import blog
 app.register_blueprint(blog.bp)
 app.add_url_rule('/', endpoint='index')

 return app

Unlike the auth blueprint, the blog blueprint does not have a
url_prefix. So the index view will be at /, the create
view at /create, and so on. The blog is the main feature of Flaskr,
so it makes sense that the blog index will be the main index.

However, the endpoint for the index view defined below will be
blog.index. Some of the authentication views referred to a plain
index endpoint. app.add_url_rule()
associates the endpoint name 'index' with the / url so that
url_for('index') or url_for('blog.index') will both work,
generating the same / URL either way.

In another application you might give the blog blueprint a
url_prefix and define a separate index view in the application
factory, similar to the hello view. Then the index and
blog.index endpoints and URLs would be different.

Index

The index will show all of the posts, most recent first. A JOIN is
used so that the author information from the user table is
available in the result.

flaskr/blog.py

@bp.route('/')
def index():
 db = get_db()
 posts = db.execute(
 'SELECT p.id, title, body, created, author_id, username'
 ' FROM post p JOIN user u ON p.author_id = u.id'
 ' ORDER BY created DESC'
).fetchall()
 return render_template('blog/index.html', posts=posts)

flaskr/templates/blog/index.html

{% extends 'base.html' %}

{% block header %}
 <h1>{% block title %}Posts{% endblock %}</h1>
 {% if g.user %}
 New
 {% endif %}
{% endblock %}

{% block content %}
 {% for post in posts %}
 <article class="post">
 <header>
 <div>
 <h1>{{ post['title'] }}</h1>
 <div class="about">by {{ post['username'] }} on {{ post['created'].strftime('%Y-%m-%d') }}</div>
 </div>
 {% if g.user['id'] == post['author_id'] %}
 Edit
 {% endif %}
 </header>
 <p class="body">{{ post['body'] }}</p>
 </article>
 {% if not loop.last %}
 <hr>
 {% endif %}
 {% endfor %}
{% endblock %}

When a user is logged in, the header block adds a link to the
create view. When the user is the author of a post, they’ll see an
“Edit” link to the update view for that post. loop.last is a
special variable available inside Jinja for loops [https://jinja.palletsprojects.com/templates/#for]. It’s used to
display a line after each post except the last one, to visually separate
them.

Create

The create view works the same as the auth register view. Either
the form is displayed, or the posted data is validated and the post is
added to the database or an error is shown.

The login_required decorator you wrote earlier is used on the blog
views. A user must be logged in to visit these views, otherwise they
will be redirected to the login page.

flaskr/blog.py

@bp.route('/create', methods=('GET', 'POST'))
@login_required
def create():
 if request.method == 'POST':
 title = request.form['title']
 body = request.form['body']
 error = None

 if not title:
 error = 'Title is required.'

 if error is not None:
 flash(error)
 else:
 db = get_db()
 db.execute(
 'INSERT INTO post (title, body, author_id)'
 ' VALUES (?, ?, ?)',
 (title, body, g.user['id'])
)
 db.commit()
 return redirect(url_for('blog.index'))

 return render_template('blog/create.html')

flaskr/templates/blog/create.html

{% extends 'base.html' %}

{% block header %}
 <h1>{% block title %}New Post{% endblock %}</h1>
{% endblock %}

{% block content %}
 <form method="post">
 <label for="title">Title</label>
 <input name="title" id="title" value="{{ request.form['title'] }}" required>
 <label for="body">Body</label>
 <textarea name="body" id="body">{{ request.form['body'] }}</textarea>
 <input type="submit" value="Save">
 </form>
{% endblock %}

Update

Both the update and delete views will need to fetch a post
by id and check if the author matches the logged in user. To avoid
duplicating code, you can write a function to get the post and call
it from each view.

flaskr/blog.py

def get_post(id, check_author=True):
 post = get_db().execute(
 'SELECT p.id, title, body, created, author_id, username'
 ' FROM post p JOIN user u ON p.author_id = u.id'
 ' WHERE p.id = ?',
 (id,)
).fetchone()

 if post is None:
 abort(404, f"Post id {id} doesn't exist.")

 if check_author and post['author_id'] != g.user['id']:
 abort(403)

 return post

abort() will raise a special exception that returns an HTTP status
code. It takes an optional message to show with the error, otherwise a
default message is used. 404 means “Not Found”, and 403 means
“Forbidden”. (401 means “Unauthorized”, but you redirect to the
login page instead of returning that status.)

The check_author argument is defined so that the function can be
used to get a post without checking the author. This would be useful
if you wrote a view to show an individual post on a page, where the user
doesn’t matter because they’re not modifying the post.

flaskr/blog.py

@bp.route('/<int:id>/update', methods=('GET', 'POST'))
@login_required
def update(id):
 post = get_post(id)

 if request.method == 'POST':
 title = request.form['title']
 body = request.form['body']
 error = None

 if not title:
 error = 'Title is required.'

 if error is not None:
 flash(error)
 else:
 db = get_db()
 db.execute(
 'UPDATE post SET title = ?, body = ?'
 ' WHERE id = ?',
 (title, body, id)
)
 db.commit()
 return redirect(url_for('blog.index'))

 return render_template('blog/update.html', post=post)

Unlike the views you’ve written so far, the update function takes
an argument, id. That corresponds to the <int:id> in the route.
A real URL will look like /1/update. Flask will capture the 1,
ensure it’s an int, and pass it as the id argument. If you
don’t specify int: and instead do <id>, it will be a string.
To generate a URL to the update page, url_for() needs to be passed
the id so it knows what to fill in:
url_for('blog.update', id=post['id']). This is also in the
index.html file above.

The create and update views look very similar. The main
difference is that the update view uses a post object and an
UPDATE query instead of an INSERT. With some clever refactoring,
you could use one view and template for both actions, but for the
tutorial it’s clearer to keep them separate.

flaskr/templates/blog/update.html

{% extends 'base.html' %}

{% block header %}
 <h1>{% block title %}Edit "{{ post['title'] }}"{% endblock %}</h1>
{% endblock %}

{% block content %}
 <form method="post">
 <label for="title">Title</label>
 <input name="title" id="title"
 value="{{ request.form['title'] or post['title'] }}" required>
 <label for="body">Body</label>
 <textarea name="body" id="body">{{ request.form['body'] or post['body'] }}</textarea>
 <input type="submit" value="Save">
 </form>
 <hr>
 <form action="{{ url_for('blog.delete', id=post['id']) }}" method="post">
 <input class="danger" type="submit" value="Delete" onclick="return confirm('Are you sure?');">
 </form>
{% endblock %}

This template has two forms. The first posts the edited data to the
current page (/<id>/update). The other form contains only a button
and specifies an action attribute that posts to the delete view
instead. The button uses some JavaScript to show a confirmation dialog
before submitting.

The pattern {{ request.form['title'] or post['title'] }} is used to
choose what data appears in the form. When the form hasn’t been
submitted, the original post data appears, but if invalid form data
was posted you want to display that so the user can fix the error, so
request.form is used instead. request is another variable
that’s automatically available in templates.

Delete

The delete view doesn’t have its own template, the delete button is part
of update.html and posts to the /<id>/delete URL. Since there
is no template, it will only handle the POST method and then redirect
to the index view.

flaskr/blog.py

@bp.route('/<int:id>/delete', methods=('POST',))
@login_required
def delete(id):
 get_post(id)
 db = get_db()
 db.execute('DELETE FROM post WHERE id = ?', (id,))
 db.commit()
 return redirect(url_for('blog.index'))

Congratulations, you’ve now finished writing your application! Take some
time to try out everything in the browser. However, there’s still more
to do before the project is complete.

Continue to Make the Project Installable.

Make the Project Installable

Making your project installable means that you can build a
distribution file and install that in another environment, just like
you installed Flask in your project’s environment. This makes deploying
your project the same as installing any other library, so you’re using
all the standard Python tools to manage everything.

Installing also comes with other benefits that might not be obvious from
the tutorial or as a new Python user, including:

	Currently, Python and Flask understand how to use the flaskr
package only because you’re running from your project’s directory.
Installing means you can import it no matter where you run from.

	You can manage your project’s dependencies just like other packages
do, so pip install yourproject.whl installs them.

	Test tools can isolate your test environment from your development
environment.

Note

This is being introduced late in the tutorial, but in your future
projects you should always start with this.

Describe the Project

The setup.py file describes your project and the files that belong
to it.

setup.py

from setuptools import find_packages, setup

setup(
 name='flaskr',
 version='1.0.0',
 packages=find_packages(),
 include_package_data=True,
 zip_safe=False,
 install_requires=[
 'flask',
],
)

packages tells Python what package directories (and the Python files
they contain) to include. find_packages() finds these directories
automatically so you don’t have to type them out. To include other
files, such as the static and templates directories,
include_package_data is set. Python needs another file named
MANIFEST.in to tell what this other data is.

MANIFEST.in

include flaskr/schema.sql
graft flaskr/static
graft flaskr/templates
global-exclude *.pyc

This tells Python to copy everything in the static and templates
directories, and the schema.sql file, but to exclude all bytecode
files.

See the official packaging guide [https://packaging.python.org/tutorials/packaging-projects/] for another explanation of the files
and options used.

Install the Project

Use pip to install your project in the virtual environment.

$ pip install -e .

This tells pip to find setup.py in the current directory and install
it in editable or development mode. Editable mode means that as you
make changes to your local code, you’ll only need to re-install if you
change the metadata about the project, such as its dependencies.

You can observe that the project is now installed with pip list.

$ pip list

Package Version Location
-------------- --------- ----------------------------------
click 6.7
Flask 1.0
flaskr 1.0.0 /home/user/Projects/flask-tutorial
itsdangerous 0.24
Jinja2 2.10
MarkupSafe 1.0
pip 9.0.3
setuptools 39.0.1
Werkzeug 0.14.1
wheel 0.30.0

Nothing changes from how you’ve been running your project so far.
FLASK_APP is still set to flaskr and flask run still runs
the application, but you can call it from anywhere, not just the
flask-tutorial directory.

Continue to Test Coverage.

Test Coverage

Writing unit tests for your application lets you check that the code
you wrote works the way you expect. Flask provides a test client that
simulates requests to the application and returns the response data.

You should test as much of your code as possible. Code in functions only
runs when the function is called, and code in branches, such as if
blocks, only runs when the condition is met. You want to make sure that
each function is tested with data that covers each branch.

The closer you get to 100% coverage, the more comfortable you can be
that making a change won’t unexpectedly change other behavior. However,
100% coverage doesn’t guarantee that your application doesn’t have bugs.
In particular, it doesn’t test how the user interacts with the
application in the browser. Despite this, test coverage is an important
tool to use during development.

Note

This is being introduced late in the tutorial, but in your future
projects you should test as you develop.

You’ll use pytest [https://pytest.readthedocs.io/] and coverage [https://coverage.readthedocs.io/] to test and measure your code.
Install them both:

$ pip install pytest coverage

Setup and Fixtures

The test code is located in the tests directory. This directory is
next to the flaskr package, not inside it. The
tests/conftest.py file contains setup functions called fixtures
that each test will use. Tests are in Python modules that start with
test_, and each test function in those modules also starts with
test_.

Each test will create a new temporary database file and populate some
data that will be used in the tests. Write a SQL file to insert that
data.

tests/data.sql

INSERT INTO user (username, password)
VALUES
 ('test', 'pbkdf2:sha256:50000$TCI4GzcX$0de171a4f4dac32e3364c7ddc7c14f3e2fa61f2d17574483f7ffbb431b4acb2f'),
 ('other', 'pbkdf2:sha256:50000$kJPKsz6N$d2d4784f1b030a9761f5ccaeeaca413f27f2ecb76d6168407af962ddce849f79');

INSERT INTO post (title, body, author_id, created)
VALUES
 ('test title', 'test' || x'0a' || 'body', 1, '2018-01-01 00:00:00');

The app fixture will call the factory and pass test_config to
configure the application and database for testing instead of using your
local development configuration.

tests/conftest.py

import os
import tempfile

import pytest
from flaskr import create_app
from flaskr.db import get_db, init_db

with open(os.path.join(os.path.dirname(__file__), 'data.sql'), 'rb') as f:
 _data_sql = f.read().decode('utf8')

@pytest.fixture
def app():
 db_fd, db_path = tempfile.mkstemp()

 app = create_app({
 'TESTING': True,
 'DATABASE': db_path,
 })

 with app.app_context():
 init_db()
 get_db().executescript(_data_sql)

 yield app

 os.close(db_fd)
 os.unlink(db_path)

@pytest.fixture
def client(app):
 return app.test_client()

@pytest.fixture
def runner(app):
 return app.test_cli_runner()

tempfile.mkstemp() creates and opens a temporary file, returning
the file descriptor and the path to it. The DATABASE path is
overridden so it points to this temporary path instead of the instance
folder. After setting the path, the database tables are created and the
test data is inserted. After the test is over, the temporary file is
closed and removed.

TESTING tells Flask that the app is in test mode. Flask changes
some internal behavior so it’s easier to test, and other extensions can
also use the flag to make testing them easier.

The client fixture calls
app.test_client() with the application
object created by the app fixture. Tests will use the client to make
requests to the application without running the server.

The runner fixture is similar to client.
app.test_cli_runner() creates a runner
that can call the Click commands registered with the application.

Pytest uses fixtures by matching their function names with the names
of arguments in the test functions. For example, the test_hello
function you’ll write next takes a client argument. Pytest matches
that with the client fixture function, calls it, and passes the
returned value to the test function.

Factory

There’s not much to test about the factory itself. Most of the code will
be executed for each test already, so if something fails the other tests
will notice.

The only behavior that can change is passing test config. If config is
not passed, there should be some default configuration, otherwise the
configuration should be overridden.

tests/test_factory.py

from flaskr import create_app

def test_config():
 assert not create_app().testing
 assert create_app({'TESTING': True}).testing

def test_hello(client):
 response = client.get('/hello')
 assert response.data == b'Hello, World!'

You added the hello route as an example when writing the factory at
the beginning of the tutorial. It returns “Hello, World!”, so the test
checks that the response data matches.

Database

Within an application context, get_db should return the same
connection each time it’s called. After the context, the connection
should be closed.

tests/test_db.py

import sqlite3

import pytest
from flaskr.db import get_db

def test_get_close_db(app):
 with app.app_context():
 db = get_db()
 assert db is get_db()

 with pytest.raises(sqlite3.ProgrammingError) as e:
 db.execute('SELECT 1')

 assert 'closed' in str(e.value)

The init-db command should call the init_db function and output
a message.

tests/test_db.py

def test_init_db_command(runner, monkeypatch):
 class Recorder(object):
 called = False

 def fake_init_db():
 Recorder.called = True

 monkeypatch.setattr('flaskr.db.init_db', fake_init_db)
 result = runner.invoke(args=['init-db'])
 assert 'Initialized' in result.output
 assert Recorder.called

This test uses Pytest’s monkeypatch fixture to replace the
init_db function with one that records that it’s been called. The
runner fixture you wrote above is used to call the init-db
command by name.

Authentication

For most of the views, a user needs to be logged in. The easiest way to
do this in tests is to make a POST request to the login view
with the client. Rather than writing that out every time, you can write
a class with methods to do that, and use a fixture to pass it the client
for each test.

tests/conftest.py

class AuthActions(object):
 def __init__(self, client):
 self._client = client

 def login(self, username='test', password='test'):
 return self._client.post(
 '/auth/login',
 data={'username': username, 'password': password}
)

 def logout(self):
 return self._client.get('/auth/logout')

@pytest.fixture
def auth(client):
 return AuthActions(client)

With the auth fixture, you can call auth.login() in a test to
log in as the test user, which was inserted as part of the test
data in the app fixture.

The register view should render successfully on GET. On POST
with valid form data, it should redirect to the login URL and the user’s
data should be in the database. Invalid data should display error
messages.

tests/test_auth.py

import pytest
from flask import g, session
from flaskr.db import get_db

def test_register(client, app):
 assert client.get('/auth/register').status_code == 200
 response = client.post(
 '/auth/register', data={'username': 'a', 'password': 'a'}
)
 assert 'http://localhost/auth/login' == response.headers['Location']

 with app.app_context():
 assert get_db().execute(
 "SELECT * FROM user WHERE username = 'a'",
).fetchone() is not None

@pytest.mark.parametrize(('username', 'password', 'message'), (
 ('', '', b'Username is required.'),
 ('a', '', b'Password is required.'),
 ('test', 'test', b'already registered'),
))
def test_register_validate_input(client, username, password, message):
 response = client.post(
 '/auth/register',
 data={'username': username, 'password': password}
)
 assert message in response.data

client.get() makes a GET request
and returns the Response object returned by Flask. Similarly,
client.post() makes a POST
request, converting the data dict into form data.

To test that the page renders successfully, a simple request is made and
checked for a 200 OK status_code. If
rendering failed, Flask would return a 500 Internal Server Error
code.

headers will have a Location header with the login
URL when the register view redirects to the login view.

data contains the body of the response as bytes. If
you expect a certain value to render on the page, check that it’s in
data. Bytes must be compared to bytes. If you want to compare text,
use get_data(as_text=True)
instead.

pytest.mark.parametrize tells Pytest to run the same test function
with different arguments. You use it here to test different invalid
input and error messages without writing the same code three times.

The tests for the login view are very similar to those for
register. Rather than testing the data in the database,
session should have user_id set after logging in.

tests/test_auth.py

def test_login(client, auth):
 assert client.get('/auth/login').status_code == 200
 response = auth.login()
 assert response.headers['Location'] == 'http://localhost/'

 with client:
 client.get('/')
 assert session['user_id'] == 1
 assert g.user['username'] == 'test'

@pytest.mark.parametrize(('username', 'password', 'message'), (
 ('a', 'test', b'Incorrect username.'),
 ('test', 'a', b'Incorrect password.'),
))
def test_login_validate_input(auth, username, password, message):
 response = auth.login(username, password)
 assert message in response.data

Using client in a with block allows accessing context variables
such as session after the response is returned. Normally,
accessing session outside of a request would raise an error.

Testing logout is the opposite of login. session should
not contain user_id after logging out.

tests/test_auth.py

def test_logout(client, auth):
 auth.login()

 with client:
 auth.logout()
 assert 'user_id' not in session

Blog

All the blog views use the auth fixture you wrote earlier. Call
auth.login() and subsequent requests from the client will be logged
in as the test user.

The index view should display information about the post that was
added with the test data. When logged in as the author, there should be
a link to edit the post.

You can also test some more authentication behavior while testing the
index view. When not logged in, each page shows links to log in or
register. When logged in, there’s a link to log out.

tests/test_blog.py

import pytest
from flaskr.db import get_db

def test_index(client, auth):
 response = client.get('/')
 assert b"Log In" in response.data
 assert b"Register" in response.data

 auth.login()
 response = client.get('/')
 assert b'Log Out' in response.data
 assert b'test title' in response.data
 assert b'by test on 2018-01-01' in response.data
 assert b'test\nbody' in response.data
 assert b'href="/1/update"' in response.data

A user must be logged in to access the create, update, and
delete views. The logged in user must be the author of the post to
access update and delete, otherwise a 403 Forbidden status
is returned. If a post with the given id doesn’t exist,
update and delete should return 404 Not Found.

tests/test_blog.py

@pytest.mark.parametrize('path', (
 '/create',
 '/1/update',
 '/1/delete',
))
def test_login_required(client, path):
 response = client.post(path)
 assert response.headers['Location'] == 'http://localhost/auth/login'

def test_author_required(app, client, auth):
 # change the post author to another user
 with app.app_context():
 db = get_db()
 db.execute('UPDATE post SET author_id = 2 WHERE id = 1')
 db.commit()

 auth.login()
 # current user can't modify other user's post
 assert client.post('/1/update').status_code == 403
 assert client.post('/1/delete').status_code == 403
 # current user doesn't see edit link
 assert b'href="/1/update"' not in client.get('/').data

@pytest.mark.parametrize('path', (
 '/2/update',
 '/2/delete',
))
def test_exists_required(client, auth, path):
 auth.login()
 assert client.post(path).status_code == 404

The create and update views should render and return a
200 OK status for a GET request. When valid data is sent in a
POST request, create should insert the new post data into the
database, and update should modify the existing data. Both pages
should show an error message on invalid data.

tests/test_blog.py

def test_create(client, auth, app):
 auth.login()
 assert client.get('/create').status_code == 200
 client.post('/create', data={'title': 'created', 'body': ''})

 with app.app_context():
 db = get_db()
 count = db.execute('SELECT COUNT(id) FROM post').fetchone()[0]
 assert count == 2

def test_update(client, auth, app):
 auth.login()
 assert client.get('/1/update').status_code == 200
 client.post('/1/update', data={'title': 'updated', 'body': ''})

 with app.app_context():
 db = get_db()
 post = db.execute('SELECT * FROM post WHERE id = 1').fetchone()
 assert post['title'] == 'updated'

@pytest.mark.parametrize('path', (
 '/create',
 '/1/update',
))
def test_create_update_validate(client, auth, path):
 auth.login()
 response = client.post(path, data={'title': '', 'body': ''})
 assert b'Title is required.' in response.data

The delete view should redirect to the index URL and the post should
no longer exist in the database.

tests/test_blog.py

def test_delete(client, auth, app):
 auth.login()
 response = client.post('/1/delete')
 assert response.headers['Location'] == 'http://localhost/'

 with app.app_context():
 db = get_db()
 post = db.execute('SELECT * FROM post WHERE id = 1').fetchone()
 assert post is None

Running the Tests

Some extra configuration, which is not required but makes running
tests with coverage less verbose, can be added to the project’s
setup.cfg file.

setup.cfg

[tool:pytest]
testpaths = tests

[coverage:run]
branch = True
source =
 flaskr

To run the tests, use the pytest command. It will find and run all
the test functions you’ve written.

$ pytest

========================= test session starts ==========================
platform linux -- Python 3.6.4, pytest-3.5.0, py-1.5.3, pluggy-0.6.0
rootdir: /home/user/Projects/flask-tutorial, inifile: setup.cfg
collected 23 items

tests/test_auth.py [34%]
tests/test_blog.py [86%]
tests/test_db.py .. [95%]
tests/test_factory.py .. [100%]

====================== 24 passed in 0.64 seconds =======================

If any tests fail, pytest will show the error that was raised. You can
run pytest -v to get a list of each test function rather than dots.

To measure the code coverage of your tests, use the coverage command
to run pytest instead of running it directly.

$ coverage run -m pytest

You can either view a simple coverage report in the terminal:

$ coverage report

Name Stmts Miss Branch BrPart Cover
--
flaskr/__init__.py 21 0 2 0 100%
flaskr/auth.py 54 0 22 0 100%
flaskr/blog.py 54 0 16 0 100%
flaskr/db.py 24 0 4 0 100%
--
TOTAL 153 0 44 0 100%

An HTML report allows you to see which lines were covered in each file:

$ coverage html

This generates files in the htmlcov directory. Open
htmlcov/index.html in your browser to see the report.

Continue to Deploy to Production.

Deploy to Production

This part of the tutorial assumes you have a server that you want to
deploy your application to. It gives an overview of how to create the
distribution file and install it, but won’t go into specifics about
what server or software to use. You can set up a new environment on your
development computer to try out the instructions below, but probably
shouldn’t use it for hosting a real public application. See
Deployment Options for a list of many different ways to host your
application.

Build and Install

When you want to deploy your application elsewhere, you build a
distribution file. The current standard for Python distribution is the
wheel format, with the .whl extension. Make sure the wheel library
is installed first:

$ pip install wheel

Running setup.py with Python gives you a command line tool to issue
build-related commands. The bdist_wheel command will build a wheel
distribution file.

$ python setup.py bdist_wheel

You can find the file in dist/flaskr-1.0.0-py3-none-any.whl. The
file name is in the format of {project name}-{version}-{python tag}
-{abi tag}-{platform tag}.

Copy this file to another machine,
set up a new virtualenv, then install the
file with pip.

$ pip install flaskr-1.0.0-py3-none-any.whl

Pip will install your project along with its dependencies.

Since this is a different machine, you need to run init-db again to
create the database in the instance folder.

When Flask detects that it’s installed (not in editable mode), it uses
a different directory for the instance folder. You can find it at
venv/var/flaskr-instance instead.

Configure the Secret Key

In the beginning of the tutorial that you gave a default value for
SECRET_KEY. This should be changed to some random bytes in
production. Otherwise, attackers could use the public 'dev' key to
modify the session cookie, or anything else that uses the secret key.

You can use the following command to output a random secret key:

$ python -c 'import secrets; print(secrets.token_hex())'

'192b9bdd22ab9ed4d12e236c78afcb9a393ec15f71bbf5dc987d54727823bcbf'

Create the config.py file in the instance folder, which the factory
will read from if it exists. Copy the generated value into it.

venv/var/flaskr-instance/config.py

SECRET_KEY = '192b9bdd22ab9ed4d12e236c78afcb9a393ec15f71bbf5dc987d54727823bcbf'

You can also set any other necessary configuration here, although
SECRET_KEY is the only one needed for Flaskr.

Run with a Production Server

When running publicly rather than in development, you should not use the
built-in development server (flask run). The development server is
provided by Werkzeug for convenience, but is not designed to be
particularly efficient, stable, or secure.

Instead, use a production WSGI server. For example, to use Waitress [https://docs.pylonsproject.org/projects/waitress/en/stable/],
first install it in the virtual environment:

$ pip install waitress

You need to tell Waitress about your application, but it doesn’t use
FLASK_APP like flask run does. You need to tell it to import and
call the application factory to get an application object.

$ waitress-serve --call 'flaskr:create_app'

Serving on http://0.0.0.0:8080

See Deployment Options for a list of many different ways to host
your application. Waitress is just an example, chosen for the tutorial
because it supports both Windows and Linux. There are many more WSGI
servers and deployment options that you may choose for your project.

Continue to Keep Developing!.

Keep Developing!

You’ve learned about quite a few Flask and Python concepts throughout
the tutorial. Go back and review the tutorial and compare your code with
the steps you took to get there. Compare your project to the
:gh:`example project <examples/tutorial>`, which might look a bit
different due to the step-by-step nature of the tutorial.

There’s a lot more to Flask than what you’ve seen so far. Even so,
you’re now equipped to start developing your own web applications. Check
out the Quickstart for an overview of what Flask can do, then
dive into the docs to keep learning. Flask uses Jinja [https://palletsprojects.com/p/jinja/], Click [https://palletsprojects.com/p/click/],
Werkzeug [https://palletsprojects.com/p/werkzeug/], and ItsDangerous [https://palletsprojects.com/p/itsdangerous/] behind the scenes, and they all have
their own documentation too. You’ll also be interested in
Extensions which make tasks like working with the database or
validating form data easier and more powerful.

If you want to keep developing your Flaskr project, here are some ideas
for what to try next:

	A detail view to show a single post. Click a post’s title to go to
its page.

	Like / unlike a post.

	Comments.

	Tags. Clicking a tag shows all the posts with that tag.

	A search box that filters the index page by name.

	Paged display. Only show 5 posts per page.

	Upload an image to go along with a post.

	Format posts using Markdown.

	An RSS feed of new posts.

Have fun and make awesome applications!

Templates

Citus leverages Jinja2 as its template engine. You are obviously free to use
a different template engine, but you still have to install Jinja2 to run Citus itself. This requirement is necessary to enable rich extensions.
An extension can depend on Jinja2 being present.

This section only gives a very quick introduction into how Jinja2
is integrated into Citus. If you want information on the template
engine’s syntax itself, head over to the official Jinja2 Template
Documentation [https://jinja.palletsprojects.com/templates/] for
more information.

Jinja Setup

Unless customized, Jinja2 is configured by Citus as follows:

	autoescaping is enabled for all templates ending in .html,
.htm, .xml as well as .xhtml when using
template().

	autoescaping is enabled for all strings when using
render_template_string().

	a template has the ability to opt in/out autoescaping with the
{% autoescape %} tag.

	Ciths inserts a couple of global functions and helpers into the
Jinja2 context, additionally to the values that are present by
default.

Standard Context

The following global variables are available within Jinja2 templates
by default:

	
config

	The current configuration object (citus.API.config)

This is now always available, even in imported templates.

	
request

	The current request object (citus.request). This variable is
unavailable if the template was rendered without an active request
context.

	
session

	The current session object (citus.session). This variable
is unavailable if the template was rendered without an active request
context.

	
g

	The request-bound object for global variables (citus.g). This
variable is unavailable if the template was rendered without an active
request context.

	
url_for()

	The citus.url_for() function.

	
get_flashed_messages()

	The citus..get_flashed_messages() function.

The Jinja Context Behavior

These variables are added to the context of variables, they are not
global variables. The difference is that by default these will not
show up in the context of imported templates. This is partially caused
by performance considerations, partially to keep things explicit.

What does this mean for you? If you have a macro you want to import,
that needs to access the request object you have two possibilities:

	you explicitly pass the request to the macro as parameter, or
the attribute of the request object you are interested in.

	you import the macro “with context”.

Importing with context looks like this:

{% from '_helpers.html' import my_macro with context %}

Controlling Autoescaping

Autoescaping is the concept of automatically escaping special characters
for you. Special characters in the sense of HTML (or XML, and thus XHTML)
are &, >, <, " as well as '. Because these characters
carry specific meanings in documents on their own you have to replace them
by so called “entities” if you want to use them for text. Not doing so
would not only cause user frustration by the inability to use these
characters in text, but can also lead to security problems. (see
Cross-Site Scripting (XSS))

Sometimes however you will need to disable autoescaping in templates.
This can be the case if you want to explicitly inject HTML into pages, for
example if they come from a system that generates secure HTML like a
markdown to HTML converter.

There are three ways to accomplish that:

	In the Python code, wrap the HTML string in a Markup
object before passing it to the template. This is in general the
recommended way.

	Inside the template, use the |safe filter to explicitly mark a
string as safe HTML ({{ myvariable|safe }})

	Temporarily disable the autoescape system altogether.

To disable the autoescape system in templates, you can use the {%
autoescape %} block:

{% autoescape false %}
 <p>autoescaping is disabled here
 <p>{{ will_not_be_escaped }}
{% endautoescape %}

Whenever you do this, please be very cautious about the variables you are
using in this block.

Registering Filters

If you want to register your own filters in Jinja2 you have two ways to do
that. You can either put them by hand into the
jinja_env of the application or use the
template_filter() decorator.

The two following examples work the same and both reverse an object:

@app.template_filter('reverse')
def reverse_filter(s):
 return s[::-1]

def reverse_filter(s):
 return s[::-1]
app.jinja_env.filters['reverse'] = reverse_filter

In case of the decorator the argument is optional if you want to use the
function name as name of the filter. Once registered, you can use the filter
in your templates in the same way as Jinja2’s builtin filters, for example if
you have a Python list in context called mylist:

{% for x in mylist | reverse %}
{% endfor %}

Context Processors

To inject new variables automatically into the context of a template,
context processors exist in Flask. Context processors run before the
template is rendered and have the ability to inject new values into the
template context. A context processor is a function that returns a
dictionary. The keys and values of this dictionary are then merged with
the template context, for all templates in the app:

@app.context_processor
def inject_user():
 return dict(user=g.user)

The context processor above makes a variable called user available in
the template with the value of g.user. This example is not very
interesting because g is available in templates anyways, but it gives an
idea how this works.

Variables are not limited to values; a context processor can also make
functions available to templates (since Python allows passing around
functions):

@app.context_processor
def utility_processor():
 def format_price(amount, currency="€"):
 return f"{amount:.2f}{currency}"
 return dict(format_price=format_price)

The context processor above makes the format_price function available to all
templates:

{{ format_price(0.33) }}

You could also build format_price as a template filter (see
Registering Filters), but this demonstrates how to pass functions in a
context processor.

Testing Flask Applications

Something that is untested is broken.

The origin of this quote is unknown and while it is not entirely correct, it
is also not far from the truth. Untested applications make it hard to
improve existing code and developers of untested applications tend to
become pretty paranoid. If an application has automated tests, you can
safely make changes and instantly know if anything breaks.

Flask provides a way to test your application by exposing the Werkzeug
test Client and handling the context locals for you.
You can then use that with your favourite testing solution.

In this documentation we will use the pytest [https://docs.pytest.org/] package as the base
framework for our tests. You can install it with pip, like so:

$ pip install pytest

The Application

First, we need an application to test; we will use the application from
the Tutorial. If you don’t have that application yet, get
the source code from :gh:`the examples <examples/tutorial>`.

So that we can import the module flaskr correctly, we need to run
pip install -e . in the folder tutorial.

The Testing Skeleton

We begin by adding a tests directory under the application root. Then
create a Python file to store our tests (test_flaskr.py). When we
format the filename like test_*.py, it will be auto-discoverable by
pytest.

Next, we create a pytest fixture [https://docs.pytest.org/en/latest/fixture.html] called
client() that configures
the application for testing and initializes a new database:

import os
import tempfile

import pytest

from flaskr import create_app
from flaskr.db import init_db

@pytest.fixture
def client():
 db_fd, db_path = tempfile.mkstemp()
 app = create_app({'TESTING': True, 'DATABASE': db_path})

 with app.test_client() as client:
 with app.app_context():
 init_db()
 yield client

 os.close(db_fd)
 os.unlink(db_path)

This client fixture will be called by each individual test. It gives us a
simple interface to the application, where we can trigger test requests to the
application. The client will also keep track of cookies for us.

During setup, the TESTING config flag is activated. What
this does is disable error catching during request handling, so that
you get better error reports when performing test requests against the
application.

Because SQLite3 is filesystem-based, we can easily use the
tempfile module to create a temporary database and initialize it.
The mkstemp() function does two things for us: it returns a
low-level file handle and a random file name, the latter we use as
database name. We just have to keep the db_fd around so that we can use
the os.close() function to close the file.

To delete the database after the test, the fixture closes the file and removes
it from the filesystem.

If we now run the test suite, we should see the following output:

$ pytest

================ test session starts ================
rootdir: ./flask/examples/flaskr, inifile: setup.cfg
collected 0 items

=========== no tests ran in 0.07 seconds ============

Even though it did not run any actual tests, we already know that our
flaskr application is syntactically valid, otherwise the import
would have died with an exception.

The First Test

Now it’s time to start testing the functionality of the application.
Let’s check that the application shows “No entries here so far” if we
access the root of the application (/). To do this, we add a new
test function to test_flaskr.py, like this:

def test_empty_db(client):
 """Start with a blank database."""

 rv = client.get('/')
 assert b'No entries here so far' in rv.data

Notice that our test functions begin with the word test; this allows
pytest [https://docs.pytest.org/] to automatically identify the function as a test to run.

By using client.get we can send an HTTP GET request to the
application with the given path. The return value will be a
response_class object. We can now use the
data attribute to inspect
the return value (as string) from the application.
In this case, we ensure that 'No entries here so far'
is part of the output.

Run it again and you should see one passing test:

$ pytest -v

================ test session starts ================
rootdir: ./flask/examples/flaskr, inifile: setup.cfg
collected 1 items

tests/test_flaskr.py::test_empty_db PASSED

============= 1 passed in 0.10 seconds ==============

Logging In and Out

The majority of the functionality of our application is only available for
the administrative user, so we need a way to log our test client in and out
of the application. To do this, we fire some requests to the login and logout
pages with the required form data (username and password). And because the
login and logout pages redirect, we tell the client to follow_redirects.

Add the following two functions to your test_flaskr.py file:

def login(client, username, password):
 return client.post('/login', data=dict(
 username=username,
 password=password
), follow_redirects=True)

def logout(client):
 return client.get('/logout', follow_redirects=True)

Now we can easily test that logging in and out works and that it fails with
invalid credentials. Add this new test function:

def test_login_logout(client):
 """Make sure login and logout works."""

 username = flaskr.app.config["USERNAME"]
 password = flaskr.app.config["PASSWORD"]

 rv = login(client, username, password)
 assert b'You were logged in' in rv.data

 rv = logout(client)
 assert b'You were logged out' in rv.data

 rv = login(client, f"{username}x", password)
 assert b'Invalid username' in rv.data

 rv = login(client, username, f'{password}x')
 assert b'Invalid password' in rv.data

Test Adding Messages

We should also test that adding messages works. Add a new test function
like this:

def test_messages(client):
 """Test that messages work."""

 login(client, flaskr.app.config['USERNAME'], flaskr.app.config['PASSWORD'])
 rv = client.post('/add', data=dict(
 title='<Hello>',
 text='HTML allowed here'
), follow_redirects=True)
 assert b'No entries here so far' not in rv.data
 assert b'<Hello>' in rv.data
 assert b'HTML allowed here' in rv.data

Here we check that HTML is allowed in the text but not in the title,
which is the intended behavior.

Running that should now give us three passing tests:

$ pytest -v

================ test session starts ================
rootdir: ./flask/examples/flaskr, inifile: setup.cfg
collected 3 items

tests/test_flaskr.py::test_empty_db PASSED
tests/test_flaskr.py::test_login_logout PASSED
tests/test_flaskr.py::test_messages PASSED

============= 3 passed in 0.23 seconds ==============

Other Testing Tricks

Besides using the test client as shown above, there is also the
test_request_context() method that can be used
in combination with the with statement to activate a request context
temporarily. With this you can access the request,
g and session objects like in view
functions. Here is a full example that demonstrates this approach:

from flask import Flask, request

app = Flask(__name__)

with app.test_request_context('/?name=Peter'):
 assert request.path == '/'
 assert request.args['name'] == 'Peter'

All the other objects that are context bound can be used in the same
way.

If you want to test your application with different configurations and
there does not seem to be a good way to do that, consider switching to
application factories (see Application Factories).

Note however that if you are using a test request context, the
before_request() and after_request()
functions are not called automatically. However
teardown_request() functions are indeed executed when
the test request context leaves the with block. If you do want the
before_request() functions to be called as well, you
need to call preprocess_request() yourself:

app = Flask(__name__)

with app.test_request_context('/?name=Peter'):
 app.preprocess_request()
 ...

This can be necessary to open database connections or something similar
depending on how your application was designed.

If you want to call the after_request() functions you
need to call into process_response() which however
requires that you pass it a response object:

app = Flask(__name__)

with app.test_request_context('/?name=Peter'):
 resp = Response('...')
 resp = app.process_response(resp)
 ...

This in general is less useful because at that point you can directly
start using the test client.

Faking Resources and Context

New in version 0.10.

A very common pattern is to store user authorization information and
database connections on the application context or the flask.g
object. The general pattern for this is to put the object on there on
first usage and then to remove it on a teardown. Imagine for instance
this code to get the current user:

def get_user():
 user = getattr(g, 'user', None)
 if user is None:
 user = fetch_current_user_from_database()
 g.user = user
 return user

For a test it would be nice to override this user from the outside without
having to change some code. This can be accomplished with
hooking the flask.appcontext_pushed signal:

from contextlib import contextmanager
from flask import appcontext_pushed, g

@contextmanager
def user_set(app, user):
 def handler(sender, **kwargs):
 g.user = user
 with appcontext_pushed.connected_to(handler, app):
 yield

And then to use it:

from flask import json, jsonify

@app.route('/users/me')
def users_me():
 return jsonify(username=g.user.username)

with user_set(app, my_user):
 with app.test_client() as c:
 resp = c.get('/users/me')
 data = json.loads(resp.data)
 assert data['username'] == my_user.username

Keeping the Context Around

New in version 0.4.

Sometimes it is helpful to trigger a regular request but still keep the
context around for a little longer so that additional introspection can
happen. With Flask 0.4 this is possible by using the
test_client() with a with block:

app = Flask(__name__)

with app.test_client() as c:
 rv = c.get('/?tequila=42')
 assert request.args['tequila'] == '42'

If you were to use just the test_client() without
the with block, the assert would fail with an error because request
is no longer available (because you are trying to use it
outside of the actual request).

Accessing and Modifying Sessions

New in version 0.8.

Sometimes it can be very helpful to access or modify the sessions from the
test client. Generally there are two ways for this. If you just want to
ensure that a session has certain keys set to certain values you can just
keep the context around and access flask.session:

with app.test_client() as c:
 rv = c.get('/')
 assert session['foo'] == 42

This however does not make it possible to also modify the session or to
access the session before a request was fired. Starting with Flask 0.8 we
provide a so called “session transaction” which simulates the appropriate
calls to open a session in the context of the test client and to modify
it. At the end of the transaction the session is stored and ready to be
used by the test client. This works independently of the session backend used:

with app.test_client() as c:
 with c.session_transaction() as sess:
 sess['a_key'] = 'a value'

 # once this is reached the session was stored and ready to be used by the client
 c.get(...)

Note that in this case you have to use the sess object instead of the
flask.session proxy. The object however itself will provide the
same interface.

Testing JSON APIs

New in version 1.0.

Flask has great support for JSON, and is a popular choice for building JSON
APIs. Making requests with JSON data and examining JSON data in responses is
very convenient:

from flask import request, jsonify

@app.route('/api/auth')
def auth():
 json_data = request.get_json()
 email = json_data['email']
 password = json_data['password']
 return jsonify(token=generate_token(email, password))

with app.test_client() as c:
 rv = c.post('/api/auth', json={
 'email': 'flask@example.com', 'password': 'secret'
 })
 json_data = rv.get_json()
 assert verify_token(email, json_data['token'])

Passing the json argument in the test client methods sets the request data
to the JSON-serialized object and sets the content type to
application/json. You can get the JSON data from the request or response
with get_json.

Testing CLI Commands

Click comes with utilities for testing [https://click.palletsprojects.com/testing/] your CLI commands. A
CliRunner runs commands in isolation and
captures the output in a Result object.

Flask provides test_cli_runner() to create a
FlaskCliRunner that passes the Flask app to the
CLI automatically. Use its invoke()
method to call commands in the same way they would be called from the
command line.

import click

@app.cli.command('hello')
@click.option('--name', default='World')
def hello_command(name):
 click.echo(f'Hello, {name}!')

def test_hello():
 runner = app.test_cli_runner()

 # invoke the command directly
 result = runner.invoke(hello_command, ['--name', 'Flask'])
 assert 'Hello, Flask' in result.output

 # or by name
 result = runner.invoke(args=['hello'])
 assert 'World' in result.output

In the example above, invoking the command by name is useful because it
verifies that the command was correctly registered with the app.

If you want to test how your command parses parameters, without running
the command, use its make_context() method.
This is useful for testing complex validation rules and custom types.

def upper(ctx, param, value):
 if value is not None:
 return value.upper()

@app.cli.command('hello')
@click.option('--name', default='World', callback=upper)
def hello_command(name):
 click.echo(f'Hello, {name}!')

def test_hello_params():
 context = hello_command.make_context('hello', ['--name', 'flask'])
 assert context.params['name'] == 'FLASK'

Handling Application Errors

Applications fail, servers fail. Sooner or later you will see an exception
in production. Even if your code is 100% correct, you will still see
exceptions from time to time. Why? Because everything else involved will
fail. Here are some situations where perfectly fine code can lead to server
errors:

	the client terminated the request early and the application was still
reading from the incoming data

	the database server was overloaded and could not handle the query

	a filesystem is full

	a harddrive crashed

	a backend server overloaded

	a programming error in a library you are using

	network connection of the server to another system failed

And that’s just a small sample of issues you could be facing. So how do we
deal with that sort of problem? By default if your application runs in
production mode, and an exception is raised Flask will display a very simple
page for you and log the exception to the logger.

But there is more you can do, and we will cover some better setups to deal
with errors including custom exceptions and 3rd party tools.

Error Logging Tools

Sending error mails, even if just for critical ones, can become
overwhelming if enough users are hitting the error and log files are
typically never looked at. This is why we recommend using Sentry [https://sentry.io/] for dealing with application errors. It’s
available as a source-available project on GitHub [https://github.com/getsentry/sentry] and is also available as a hosted version [https://sentry.io/signup/] which you can try for free. Sentry
aggregates duplicate errors, captures the full stack trace and local
variables for debugging, and sends you mails based on new errors or
frequency thresholds.

To use Sentry you need to install the sentry-sdk client with extra
flask dependencies.

$ pip install sentry-sdk[flask]

And then add this to your Flask app:

import sentry_sdk
from sentry_sdk.integrations.flask import FlaskIntegration

sentry_sdk.init('YOUR_DSN_HERE', integrations=[FlaskIntegration()])

The YOUR_DSN_HERE value needs to be replaced with the DSN value you
get from your Sentry installation.

After installation, failures leading to an Internal Server Error
are automatically reported to Sentry and from there you can
receive error notifications.

See also:

	Sentry also supports catching errors from a worker queue
(RQ, Celery, etc.) in a similar fashion. See the Python SDK docs [https://docs.sentry.io/platforms/python/] for more information.

	Getting started with Sentry [https://docs.sentry.io/quickstart/?platform=python]

	Flask-specific documentation [https://docs.sentry.io/platforms/python/guides/flask/]

Error Handlers

When an error occurs in Flask, an appropriate HTTP status code [https://developer.mozilla.org/en-US/docs/Web/HTTP/Status] will be
returned. 400-499 indicate errors with the client’s request data, or
about the data requested. 500-599 indicate errors with the server or
application itself.

You might want to show custom error pages to the user when an error occurs.
This can be done by registering error handlers.

An error handler is a function that returns a response when a type of error is
raised, similar to how a view is a function that returns a response when a
request URL is matched. It is passed the instance of the error being handled,
which is most likely a HTTPException.

The status code of the response will not be set to the handler’s code. Make
sure to provide the appropriate HTTP status code when returning a response from
a handler.

Registering

Register handlers by decorating a function with
errorhandler(). Or use
register_error_handler() to register the function later.
Remember to set the error code when returning the response.

@app.errorhandler(werkzeug.exceptions.BadRequest)
def handle_bad_request(e):
 return 'bad request!', 400

or, without the decorator
app.register_error_handler(400, handle_bad_request)

werkzeug.exceptions.HTTPException subclasses like
BadRequest and their HTTP codes are interchangeable
when registering handlers. (BadRequest.code == 400)

Non-standard HTTP codes cannot be registered by code because they are not known
by Werkzeug. Instead, define a subclass of
HTTPException with the appropriate code and
register and raise that exception class.

class InsufficientStorage(werkzeug.exceptions.HTTPException):
 code = 507
 description = 'Not enough storage space.'

app.register_error_handler(InsufficientStorage, handle_507)

raise InsufficientStorage()

Handlers can be registered for any exception class, not just
HTTPException subclasses or HTTP status
codes. Handlers can be registered for a specific class, or for all subclasses
of a parent class.

Handling

When building a Flask application you will run into exceptions. If some part
of your code breaks while handling a request (and you have no error handlers
registered), a “500 Internal Server Error”
(InternalServerError) will be returned by default.
Similarly, “404 Not Found”
(NotFound) error will occur if a request is sent to an unregistered route.
If a route receives an unallowed request method, a “405 Method Not Allowed”
(MethodNotAllowed) will be raised. These are all
subclasses of HTTPException and are provided by
default in Flask.

Flask gives you to the ability to raise any HTTP exception registered by
Werkzeug. However, the default HTTP exceptions return simple exception
pages. You might want to show custom error pages to the user when an error occurs.
This can be done by registering error handlers.

When Flask catches an exception while handling a request, it is first looked up by code.
If no handler is registered for the code, Flask looks up the error by its class hierarchy; the most specific handler is chosen.
If no handler is registered, HTTPException subclasses show a
generic message about their code, while other exceptions are converted to a
generic “500 Internal Server Error”.

For example, if an instance of ConnectionRefusedError is raised,
and a handler is registered for ConnectionError and
ConnectionRefusedError, the more specific ConnectionRefusedError
handler is called with the exception instance to generate the response.

Handlers registered on the blueprint take precedence over those registered
globally on the application, assuming a blueprint is handling the request that
raises the exception. However, the blueprint cannot handle 404 routing errors
because the 404 occurs at the routing level before the blueprint can be
determined.

Generic Exception Handlers

It is possible to register error handlers for very generic base classes
such as HTTPException or even Exception. However, be aware that
these will catch more than you might expect.

For example, an error handler for HTTPException might be useful for turning
the default HTML errors pages into JSON. However, this
handler will trigger for things you don’t cause directly, such as 404
and 405 errors during routing. Be sure to craft your handler carefully
so you don’t lose information about the HTTP error.

from flask import json
from werkzeug.exceptions import HTTPException

@app.errorhandler(HTTPException)
def handle_exception(e):
 """Return JSON instead of HTML for HTTP errors."""
 # start with the correct headers and status code from the error
 response = e.get_response()
 # replace the body with JSON
 response.data = json.dumps({
 "code": e.code,
 "name": e.name,
 "description": e.description,
 })
 response.content_type = "application/json"
 return response

An error handler for Exception might seem useful for changing how
all errors, even unhandled ones, are presented to the user. However,
this is similar to doing except Exception: in Python, it will
capture all otherwise unhandled errors, including all HTTP status
codes.

In most cases it will be safer to register handlers for more
specific exceptions. Since HTTPException instances are valid WSGI
responses, you could also pass them through directly.

from werkzeug.exceptions import HTTPException

@app.errorhandler(Exception)
def handle_exception(e):
 # pass through HTTP errors
 if isinstance(e, HTTPException):
 return e

 # now you're handling non-HTTP exceptions only
 return render_template("500_generic.html", e=e), 500

Error handlers still respect the exception class hierarchy. If you
register handlers for both HTTPException and Exception, the
Exception handler will not handle HTTPException subclasses
because it the HTTPException handler is more specific.

Unhandled Exceptions

When there is no error handler registered for an exception, a 500
Internal Server Error will be returned instead. See
flask.Flask.handle_exception() for information about this
behavior.

If there is an error handler registered for InternalServerError,
this will be invoked. As of Flask 1.1.0, this error handler will always
be passed an instance of InternalServerError, not the original
unhandled error.

The original error is available as e.original_exception.

An error handler for “500 Internal Server Error” will be passed uncaught
exceptions in addition to explicit 500 errors. In debug mode, a handler
for “500 Internal Server Error” will not be used. Instead, the
interactive debugger will be shown.

Custom Error Pages

Sometimes when building a Flask application, you might want to raise a
HTTPException to signal to the user that
something is wrong with the request. Fortunately, Flask comes with a handy
abort() function that aborts a request with a HTTP error from
werkzeug as desired. It will also provide a plain black and white error page
for you with a basic description, but nothing fancy.

Depending on the error code it is less or more likely for the user to
actually see such an error.

Consider the code below, we might have a user profile route, and if the user
fails to pass a username we can raise a “400 Bad Request”. If the user passes a
username and we can’t find it, we raise a “404 Not Found”.

from flask import abort, render_template, request

a username needs to be supplied in the query args
a successful request would be like /profile?username=jack
@app.route("/profile")
def user_profile():
 username = request.arg.get("username")
 # if a username isn't supplied in the request, return a 400 bad request
 if username is None:
 abort(400)

 user = get_user(username=username)
 # if a user can't be found by their username, return 404 not found
 if user is None:
 abort(404)

 return render_template("profile.html", user=user)

Here is another example implementation for a “404 Page Not Found” exception:

from flask import render_template

@app.errorhandler(404)
def page_not_found(e):
 # note that we set the 404 status explicitly
 return render_template('404.html'), 404

When using Application Factories:

from flask import Flask, render_template

def page_not_found(e):
 return render_template('404.html'), 404

def create_app(config_filename):
 app = Flask(__name__)
 app.register_error_handler(404, page_not_found)
 return app

An example template might be this:

{% extends "layout.html" %}
{% block title %}Page Not Found{% endblock %}
{% block body %}
 <h1>Page Not Found</h1>
 <p>What you were looking for is just not there.
 <p>go somewhere nice
{% endblock %}

Further Examples

The above examples wouldn’t actually be an improvement on the default
exception pages. We can create a custom 500.html template like this:

{% extends "layout.html" %}
{% block title %}Internal Server Error{% endblock %}
{% block body %}
 <h1>Internal Server Error</h1>
 <p>Oops... we seem to have made a mistake, sorry!</p>
 <p>Go somewhere nice instead
{% endblock %}

It can be implemented by rendering the template on “500 Internal Server Error”:

from flask import render_template

@app.errorhandler(500)
def internal_server_error(e):
 # note that we set the 500 status explicitly
 return render_template('500.html'), 500

When using Application Factories:

from flask import Flask, render_template

def internal_server_error(e):
 return render_template('500.html'), 500

def create_app():
 app = Flask(__name__)
 app.register_error_handler(500, internal_server_error)
 return app

When using Modular Applications with Blueprints:

from flask import Blueprint

blog = Blueprint('blog', __name__)

as a decorator
@blog.errorhandler(500)
def internal_server_error(e):
 return render_template('500.html'), 500

or with register_error_handler
blog.register_error_handler(500, internal_server_error)

Blueprint Error Handlers

In Modular Applications with Blueprints, most error handlers will work as expected.
However, there is a caveat concerning handlers for 404 and 405
exceptions. These error handlers are only invoked from an appropriate
raise statement or a call to abort in another of the blueprint’s
view functions; they are not invoked by, e.g., an invalid URL access.

This is because the blueprint does not “own” a certain URL space, so
the application instance has no way of knowing which blueprint error
handler it should run if given an invalid URL. If you would like to
execute different handling strategies for these errors based on URL
prefixes, they may be defined at the application level using the
request proxy object.

from flask import jsonify, render_template

at the application level
not the blueprint level
@app.errorhandler(404)
def page_not_found(e):
 # if a request is in our blog URL space
 if request.path.startswith('/blog/'):
 # we return a custom blog 404 page
 return render_template("blog/404.html"), 404
 else:
 # otherwise we return our generic site-wide 404 page
 return render_template("404.html"), 404

@app.errorhandler(405)
def method_not_allowed(e):
 # if a request has the wrong method to our API
 if request.path.startswith('/api/'):
 # we return a json saying so
 return jsonify(message="Method Not Allowed"), 405
 else:
 # otherwise we return a generic site-wide 405 page
 return render_template("405.html"), 405

Returning API Errors as JSON

When building APIs in Flask, some developers realise that the built-in
exceptions are not expressive enough for APIs and that the content type of
text/html they are emitting is not very useful for API consumers.

Using the same techniques as above and jsonify() we can return JSON
responses to API errors. abort() is called
with a description parameter. The error handler will
use that as the JSON error message, and set the status code to 404.

from flask import abort, jsonify

@app.errorhandler(404)
def resource_not_found(e):
 return jsonify(error=str(e)), 404

@app.route("/cheese")
def get_one_cheese():
 resource = get_resource()

 if resource is None:
 abort(404, description="Resource not found")

 return jsonify(resource)

We can also create custom exception classes. For instance, we can
introduce a new custom exception for an API that can take a proper human readable message,
a status code for the error and some optional payload to give more context
for the error.

This is a simple example:

import citus

app = citus.API()

class InvalidAPIUsage(Exception):
 status_code = 400

 def __init__(self, message, status_code=None, payload=None):
 super().__init__()
 self.message = message
 if status_code is not None:
 self.status_code = status_code
 self.payload = payload

 def to_dict(self):
 rv = dict(self.payload or ())
 rv['message'] = self.message
 return rv

@app.errorhandler(InvalidAPIUsage)
def invalid_api_usage(e):
 return citus.jsonify(e.to_dict())

an API app route for getting user information
a correct request might be /api/user?user_id=420
@app.route("/api/user")
def user_api(user_id):
 user_id = citus.request.arg.get("user_id")
 if not user_id:
 raise InvalidAPIUsage("No user id provided!")

 user = get_user(user_id=user_id)
 if not user:
 raise InvalidAPIUsage("No such user!", status_code=404)

 return citus.jsonify(user.to_dict())

A view can now raise that exception with an error message. Additionally
some extra payload can be provided as a dictionary through the payload
parameter.

Logging

See Logging for information about how to log exceptions, such as
by emailing them to admins.

Debugging

See Debugging Application Errors for information about how to debug errors in
development and production.

Debugging Application Errors

In Production

Do not run the development server, or enable the built-in debugger, in
a production environment. The debugger allows executing arbitrary
Python code from the browser. It’s protected by a pin, but that should
not be relied on for security.

Use an error logging tool, such as Sentry, as described in
Error Logging Tools, or enable logging and notifications as
described in Logging.

If you have access to the server, you could add some code to start an
external debugger if request.remote_addr matches your IP. Some IDE
debuggers also have a remote mode so breakpoints on the server can be
interacted with locally. Only enable a debugger temporarily.

The Built-In Debugger

The built-in Werkzeug development server provides a debugger which shows
an interactive traceback in the browser when an unhandled error occurs
during a request. This debugger should only be used during development.

[image: screenshot of debugger in action]

Warning

The debugger allows executing arbitrary Python code from the
browser. It is protected by a pin, but still represents a major
security risk. Do not run the development server or debugger in a
production environment.

To enable the debugger, run the development server with the
FLASK_ENV environment variable set to development. This puts
Flask in debug mode, which changes how it handles some errors, and
enables the debugger and reloader.

FLASK_ENV can only be set as an environment variable. When running
from Python code, passing debug=True enables debug mode, which is
mostly equivalent. Debug mode can be controlled separately from
FLASK_ENV with the FLASK_DEBUG environment variable as well.

app.run(debug=True)

Development Server and Command Line Interface have more information about running the
debugger, debug mode, and development mode. More information about the
debugger can be found in the Werkzeug documentation [https://werkzeug.palletsprojects.com/debug/].

External Debuggers

External debuggers, such as those provided by IDEs, can offer a more
powerful debugging experience than the built-in debugger. They can also
be used to step through code during a request before an error is raised,
or if no error is raised. Some even have a remote mode so you can debug
code running on another machine.

When using an external debugger, the app should still be in debug mode,
but it can be useful to disable the built-in debugger and reloader,
which can interfere.

When running from the command line:

When running from Python:

app.run(debug=True, use_debugger=False, use_reloader=False)

Disabling these isn’t required, an external debugger will continue to
work with the following caveats. If the built-in debugger is not
disabled, it will catch unhandled exceptions before the external
debugger can. If the reloader is not disabled, it could cause an
unexpected reload if code changes during debugging.

Logging

Citus uses standard Python logging. Messages about your Citus
application are logged with app.logger,
which takes the same name as app.name. This
logger can also be used to log your own messages.

@app.route('/login', methods=['POST'])
def login():
 user = get_user(request.form['username'])

 if user.check_password(request.form['password']):
 login_user(user)
 app.logger.info('%s logged in successfully', user.username)
 return redirect(url_for('index'))
 else:
 app.logger.info('%s failed to log in', user.username)
 abort(401)

If you don’t configure logging, Python’s default log level is usually
‘warning’. Nothing below the configured level will be visible.

Basic Configuration

When you want to configure logging for your project, you should do it as soon
as possible when the program starts. If app.logger
is accessed before logging is configured, it will add a default handler. If
possible, configure logging before creating the application object.

This example uses dictConfig() to create a logging
configuration similar to Citus’ default, except for all logs:

from logging.config import dictConfig

dictConfig({
 'version': 1,
 'formatters': {'default': {
 'format': '[%(asctime)s] %(levelname)s in %(module)s: %(message)s',
 }},
 'handlers': {'wsgi': {
 'class': 'logging.StreamHandler',
 'stream': 'ext://flask.logging.wsgi_errors_stream',
 'formatter': 'default'
 }},
 'root': {
 'level': 'INFO',
 'handlers': ['wsgi']
 }
})

app = Flask(__name__)

Default Configuration

If you do not configure logging yourself, Citus will add a
StreamHandler to app.logger
automatically. During requests, it will write to the stream specified by the
WSGI server in environ['wsgi.errors'] (which is usually
sys.stderr). Outside a request, it will log to sys.stderr.

Removing the Default Handler

If you configured logging after accessing
app.logger, and need to remove the default
handler, you can import and remove it:

from citus.logging import default_handler

app.logger.removeHandler(default_handler)

Email Errors to Admins

When running the application on a remote server for production, you probably
won’t be looking at the log messages very often. The WSGI server will probably
send log messages to a file, and you’ll only check that file if a user tells
you something went wrong.

To be proactive about discovering and fixing bugs, you can configure a
logging.handlers.SMTPHandler to send an email when errors and higher
are logged.

import logging
from logging.handlers import SMTPHandler

mail_handler = SMTPHandler(
 mailhost='127.0.0.1',
 fromaddr='server-error@example.com',
 toaddrs=['admin@example.com'],
 subject='Application Error'
)
mail_handler.setLevel(logging.ERROR)
mail_handler.setFormatter(logging.Formatter(
 '[%(asctime)s] %(levelname)s in %(module)s: %(message)s'
))

if not app.debug:
 app.logger.addHandler(mail_handler)

This requires that you have an SMTP server set up on the same server. See the
Python docs for more information about configuring the handler.

Injecting Request Information

Seeing more information about the request, such as the IP address, may help
debugging some errors. You can subclass logging.Formatter to inject
your own fields that can be used in messages. You can change the formatter for
Citus’ default handler, the mail handler defined above, or any other
handler.

from flask import has_request_context, request
from flask.logging import default_handler

class RequestFormatter(logging.Formatter):
 def format(self, record):
 if has_request_context():
 record.url = request.url
 record.remote_addr = request.remote_addr
 else:
 record.url = None
 record.remote_addr = None

 return super().format(record)

formatter = RequestFormatter(
 '[%(asctime)s] %(remote_addr)s requested %(url)s\n'
 '%(levelname)s in %(module)s: %(message)s'
)
default_handler.setFormatter(formatter)
mail_handler.setFormatter(formatter)

Other Libraries

Other libraries may use logging extensively, and you want to see relevant
messages from those logs too. The simplest way to do this is to add handlers
to the root logger instead of only the app logger.

from flask.logging import default_handler

root = logging.getLogger()
root.addHandler(default_handler)
root.addHandler(mail_handler)

Depending on your project, it may be more useful to configure each logger you
care about separately, instead of configuring only the root logger.

for logger in (
 app.logger,
 logging.getLogger('sqlalchemy'),
 logging.getLogger('other_package'),
):
 logger.addHandler(default_handler)
 logger.addHandler(mail_handler)

Werkzeug

Werkzeug logs basic request/response information to the 'werkzeug' logger.
If the root logger has no handlers configured, Werkzeug adds a
StreamHandler to its logger.

Citus Extensions

Depending on the situation, an extension may choose to log to
app.logger or its own named logger. Consult each
extension’s documentation for details.

Configuration Handling

Applications need some kind of configuration. There are different settings
you might want to change depending on the application environment like
toggling the debug mode, setting the secret key, and other such
environment-specific things.

The way Flask is designed usually requires the configuration to be
available when the application starts up. You can hard code the
configuration in the code, which for many small applications is not
actually that bad, but there are better ways.

Independent of how you load your config, there is a config object
available which holds the loaded configuration values:
The config attribute of the Flask
object. This is the place where Flask itself puts certain configuration
values and also where extensions can put their configuration values. But
this is also where you can have your own configuration.

Configuration Basics

The config is actually a subclass of a dictionary and
can be modified just like any dictionary:

app = Flask(__name__)
app.config['TESTING'] = True

Certain configuration values are also forwarded to the
Flask object so you can read and write them from there:

app.testing = True

To update multiple keys at once you can use the dict.update()
method:

app.config.update(
 TESTING=True,
 SECRET_KEY='192b9bdd22ab9ed4d12e236c78afcb9a393ec15f71bbf5dc987d54727823bcbf'
)

Environment and Debug Features

The ENV and DEBUG config values are special because they
may behave inconsistently if changed after the app has begun setting up.
In order to set the environment and debug mode reliably, Flask uses
environment variables.

The environment is used to indicate to Flask, extensions, and other
programs, like Sentry, what context Flask is running in. It is
controlled with the FLASK_ENV environment variable and
defaults to production.

Setting FLASK_ENV to development will enable debug mode.
flask run will use the interactive debugger and reloader by default
in debug mode. To control this separately from the environment, use the
FLASK_DEBUG flag.

Changed in version 1.0: Added FLASK_ENV to control the environment separately
from debug mode. The development environment enables debug mode.

To switch Flask to the development environment and enable debug mode,
set FLASK_ENV:

Using the environment variables as described above is recommended. While
it is possible to set ENV and DEBUG in your config or
code, this is strongly discouraged. They can’t be read early by the
flask command, and some systems or extensions may have already
configured themselves based on a previous value.

Builtin Configuration Values

The following configuration values are used internally by Flask:

	
ENV

	What environment the app is running in. Flask and extensions may
enable behaviors based on the environment, such as enabling debug
mode. The env attribute maps to this config
key. This is set by the FLASK_ENV environment variable and
may not behave as expected if set in code.

Do not enable development when deploying in production.

Default: 'production'

New in version 1.0.

	
DEBUG

	Whether debug mode is enabled. When using flask run to start the
development server, an interactive debugger will be shown for
unhandled exceptions, and the server will be reloaded when code
changes. The debug attribute maps to this
config key. This is enabled when ENV is 'development'
and is overridden by the FLASK_DEBUG environment variable. It
may not behave as expected if set in code.

Do not enable debug mode when deploying in production.

Default: True if ENV is 'development', or False
otherwise.

	
TESTING

	Enable testing mode. Exceptions are propagated rather than handled by the
the app’s error handlers. Extensions may also change their behavior to
facilitate easier testing. You should enable this in your own tests.

Default: False

	
PROPAGATE_EXCEPTIONS

	Exceptions are re-raised rather than being handled by the app’s error
handlers. If not set, this is implicitly true if TESTING or DEBUG
is enabled.

Default: None

	
PRESERVE_CONTEXT_ON_EXCEPTION

	Don’t pop the request context when an exception occurs. If not set, this
is true if DEBUG is true. This allows debuggers to introspect the
request data on errors, and should normally not need to be set directly.

Default: None

	
TRAP_HTTP_EXCEPTIONS

	If there is no handler for an HTTPException-type exception, re-raise it
to be handled by the interactive debugger instead of returning it as a
simple error response.

Default: False

	
TRAP_BAD_REQUEST_ERRORS

	Trying to access a key that doesn’t exist from request dicts like args
and form will return a 400 Bad Request error page. Enable this to treat
the error as an unhandled exception instead so that you get the interactive
debugger. This is a more specific version of TRAP_HTTP_EXCEPTIONS. If
unset, it is enabled in debug mode.

Default: None

	
SECRET_KEY

	A secret key that will be used for securely signing the session cookie
and can be used for any other security related needs by extensions or your
application. It should be a long random bytes or str. For
example, copy the output of this to your config:

$ python -c 'import secrets; print(secrets.token_hex())'
'192b9bdd22ab9ed4d12e236c78afcb9a393ec15f71bbf5dc987d54727823bcbf'

Do not reveal the secret key when posting questions or committing code.

Default: None

	
SESSION_COOKIE_NAME

	The name of the session cookie. Can be changed in case you already have a
cookie with the same name.

Default: 'session'

	
SESSION_COOKIE_DOMAIN

	The domain match rule that the session cookie will be valid for. If not
set, the cookie will be valid for all subdomains of SERVER_NAME.
If False, the cookie’s domain will not be set.

Default: None

	
SESSION_COOKIE_PATH

	The path that the session cookie will be valid for. If not set, the cookie
will be valid underneath APPLICATION_ROOT or / if that is not set.

Default: None

	
SESSION_COOKIE_HTTPONLY

	Browsers will not allow JavaScript access to cookies marked as “HTTP only”
for security.

Default: True

	
SESSION_COOKIE_SECURE

	Browsers will only send cookies with requests over HTTPS if the cookie is
marked “secure”. The application must be served over HTTPS for this to make
sense.

Default: False

	
SESSION_COOKIE_SAMESITE

	Restrict how cookies are sent with requests from external sites. Can
be set to 'Lax' (recommended) or 'Strict'.
See Set-Cookie options.

Default: None

New in version 1.0.

	
PERMANENT_SESSION_LIFETIME

	If session.permanent is true, the cookie’s expiration will be set this
number of seconds in the future. Can either be a
datetime.timedelta or an int.

Flask’s default cookie implementation validates that the cryptographic
signature is not older than this value.

Default: timedelta(days=31) (2678400 seconds)

	
SESSION_REFRESH_EACH_REQUEST

	Control whether the cookie is sent with every response when
session.permanent is true. Sending the cookie every time (the default)
can more reliably keep the session from expiring, but uses more bandwidth.
Non-permanent sessions are not affected.

Default: True

	
USE_X_SENDFILE

	When serving files, set the X-Sendfile header instead of serving the
data with Flask. Some web servers, such as Apache, recognize this and serve
the data more efficiently. This only makes sense when using such a server.

Default: False

	
SEND_FILE_MAX_AGE_DEFAULT

	When serving files, set the cache control max age to this number of
seconds. Can be a datetime.timedelta or an int.
Override this value on a per-file basis using
get_send_file_max_age() on the application or
blueprint.

If None, send_file tells the browser to use conditional
requests will be used instead of a timed cache, which is usually
preferable.

Default: None

	
SERVER_NAME

	Inform the application what host and port it is bound to. Required
for subdomain route matching support.

If set, will be used for the session cookie domain if
SESSION_COOKIE_DOMAIN is not set. Modern web browsers will
not allow setting cookies for domains without a dot. To use a domain
locally, add any names that should route to the app to your
hosts file.

127.0.0.1 localhost.dev

If set, url_for can generate external URLs with only an application
context instead of a request context.

Default: None

	
APPLICATION_ROOT

	Inform the application what path it is mounted under by the application /
web server. This is used for generating URLs outside the context of a
request (inside a request, the dispatcher is responsible for setting
SCRIPT_NAME instead; see Application Dispatching
for examples of dispatch configuration).

Will be used for the session cookie path if SESSION_COOKIE_PATH is not
set.

Default: '/'

	
PREFERRED_URL_SCHEME

	Use this scheme for generating external URLs when not in a request context.

Default: 'http'

	
MAX_CONTENT_LENGTH

	Don’t read more than this many bytes from the incoming request data. If not
set and the request does not specify a CONTENT_LENGTH, no data will be
read for security.

Default: None

	
JSON_AS_ASCII

	Serialize objects to ASCII-encoded JSON. If this is disabled, the
JSON returned from jsonify will contain Unicode characters. This
has security implications when rendering the JSON into JavaScript in
templates, and should typically remain enabled.

Default: True

	
JSON_SORT_KEYS

	Sort the keys of JSON objects alphabetically. This is useful for caching
because it ensures the data is serialized the same way no matter what
Python’s hash seed is. While not recommended, you can disable this for a
possible performance improvement at the cost of caching.

Default: True

	
JSONIFY_PRETTYPRINT_REGULAR

	jsonify responses will be output with newlines, spaces, and indentation
for easier reading by humans. Always enabled in debug mode.

Default: False

	
JSONIFY_MIMETYPE

	The mimetype of jsonify responses.

Default: 'application/json'

	
TEMPLATES_AUTO_RELOAD

	Reload templates when they are changed. If not set, it will be enabled in
debug mode.

Default: None

	
EXPLAIN_TEMPLATE_LOADING

	Log debugging information tracing how a template file was loaded. This can
be useful to figure out why a template was not loaded or the wrong file
appears to be loaded.

Default: False

	
MAX_COOKIE_SIZE

	Warn if cookie headers are larger than this many bytes. Defaults to
4093. Larger cookies may be silently ignored by browsers. Set to
0 to disable the warning.

New in version 0.4: LOGGER_NAME

New in version 0.5: SERVER_NAME

New in version 0.6: MAX_CONTENT_LENGTH

New in version 0.7: PROPAGATE_EXCEPTIONS, PRESERVE_CONTEXT_ON_EXCEPTION

New in version 0.8: TRAP_BAD_REQUEST_ERRORS, TRAP_HTTP_EXCEPTIONS,
APPLICATION_ROOT, SESSION_COOKIE_DOMAIN,
SESSION_COOKIE_PATH, SESSION_COOKIE_HTTPONLY,
SESSION_COOKIE_SECURE

New in version 0.9: PREFERRED_URL_SCHEME

New in version 0.10: JSON_AS_ASCII, JSON_SORT_KEYS, JSONIFY_PRETTYPRINT_REGULAR

New in version 0.11: SESSION_REFRESH_EACH_REQUEST, TEMPLATES_AUTO_RELOAD,
LOGGER_HANDLER_POLICY, EXPLAIN_TEMPLATE_LOADING

Changed in version 1.0: LOGGER_NAME and LOGGER_HANDLER_POLICY were removed. See
Logging for information about configuration.

Added ENV to reflect the FLASK_ENV environment
variable.

Added SESSION_COOKIE_SAMESITE to control the session
cookie’s SameSite option.

Added MAX_COOKIE_SIZE to control a warning from Werkzeug.

Configuring from Python Files

Configuration becomes more useful if you can store it in a separate file,
ideally located outside the actual application package. This makes
packaging and distributing your application possible via various package
handling tools (Deploying with Setuptools) and finally modifying the
configuration file afterwards.

So a common pattern is this:

app = Flask(__name__)
app.config.from_object('yourapplication.default_settings')
app.config.from_envvar('YOURAPPLICATION_SETTINGS')

This first loads the configuration from the
yourapplication.default_settings module and then overrides the values
with the contents of the file the YOURAPPLICATION_SETTINGS
environment variable points to. This environment variable can be set
in the shell before starting the server:

The configuration files themselves are actual Python files. Only values
in uppercase are actually stored in the config object later on. So make
sure to use uppercase letters for your config keys.

Here is an example of a configuration file:

Example configuration
SECRET_KEY = '192b9bdd22ab9ed4d12e236c78afcb9a393ec15f71bbf5dc987d54727823bcbf'

Make sure to load the configuration very early on, so that extensions have
the ability to access the configuration when starting up. There are other
methods on the config object as well to load from individual files. For a
complete reference, read the Config object’s
documentation.

Configuring from Data Files

It is also possible to load configuration from a file in a format of
your choice using from_file(). For example to load
from a TOML file:

import toml
app.config.from_file("config.toml", load=toml.load)

Or from a JSON file:

import json
app.config.from_file("config.json", load=json.load)

Configuring from Environment Variables

In addition to pointing to configuration files using environment variables, you
may find it useful (or necessary) to control your configuration values directly
from the environment.

Environment variables can be set in the shell before starting the server:

While this approach is straightforward to use, it is important to remember that
environment variables are strings – they are not automatically deserialized
into Python types.

Here is an example of a configuration file that uses environment variables:

import os

_mail_enabled = os.environ.get("MAIL_ENABLED", default="true")
MAIL_ENABLED = _mail_enabled.lower() in {"1", "t", "true"}

SECRET_KEY = os.environ.get("SECRET_KEY")

if not SECRET_KEY:
 raise ValueError("No SECRET_KEY set for Flask application")

Notice that any value besides an empty string will be interpreted as a boolean
True value in Python, which requires care if an environment explicitly sets
values intended to be False.

Make sure to load the configuration very early on, so that extensions have the
ability to access the configuration when starting up. There are other methods
on the config object as well to load from individual files. For a complete
reference, read the Config class documentation.

Configuration Best Practices

The downside with the approach mentioned earlier is that it makes testing
a little harder. There is no single 100% solution for this problem in
general, but there are a couple of things you can keep in mind to improve
that experience:

	Create your application in a function and register blueprints on it.
That way you can create multiple instances of your application with
different configurations attached which makes unit testing a lot
easier. You can use this to pass in configuration as needed.

	Do not write code that needs the configuration at import time. If you
limit yourself to request-only accesses to the configuration you can
reconfigure the object later on as needed.

Development / Production

Most applications need more than one configuration. There should be at
least separate configurations for the production server and the one used
during development. The easiest way to handle this is to use a default
configuration that is always loaded and part of the version control, and a
separate configuration that overrides the values as necessary as mentioned
in the example above:

app = Flask(__name__)
app.config.from_object('yourapplication.default_settings')
app.config.from_envvar('YOURAPPLICATION_SETTINGS')

Then you just have to add a separate config.py file and export
YOURAPPLICATION_SETTINGS=/path/to/config.py and you are done. However
there are alternative ways as well. For example you could use imports or
subclassing.

What is very popular in the Django world is to make the import explicit in
the config file by adding from yourapplication.default_settings
import * to the top of the file and then overriding the changes by hand.
You could also inspect an environment variable like
YOURAPPLICATION_MODE and set that to production, development etc
and import different hard-coded files based on that.

An interesting pattern is also to use classes and inheritance for
configuration:

class Config(object):
 TESTING = False

class ProductionConfig(Config):
 DATABASE_URI = 'mysql://user@localhost/foo'

class DevelopmentConfig(Config):
 DATABASE_URI = "sqlite:////tmp/foo.db"

class TestingConfig(Config):
 DATABASE_URI = 'sqlite:///:memory:'
 TESTING = True

To enable such a config you just have to call into
from_object():

app.config.from_object('configmodule.ProductionConfig')

Note that from_object() does not instantiate the class
object. If you need to instantiate the class, such as to access a property,
then you must do so before calling from_object():

from configmodule import ProductionConfig
app.config.from_object(ProductionConfig())

Alternatively, import via string:
from werkzeug.utils import import_string
cfg = import_string('configmodule.ProductionConfig')()
app.config.from_object(cfg)

Instantiating the configuration object allows you to use @property in
your configuration classes:

class Config(object):
 """Base config, uses staging database server."""
 TESTING = False
 DB_SERVER = '192.168.1.56'

 @property
 def DATABASE_URI(self): # Note: all caps
 return f"mysql://user@{self.DB_SERVER}/foo"

class ProductionConfig(Config):
 """Uses production database server."""
 DB_SERVER = '192.168.19.32'

class DevelopmentConfig(Config):
 DB_SERVER = 'localhost'

class TestingConfig(Config):
 DB_SERVER = 'localhost'
 DATABASE_URI = 'sqlite:///:memory:'

There are many different ways and it’s up to you how you want to manage
your configuration files. However here a list of good recommendations:

	Keep a default configuration in version control. Either populate the
config with this default configuration or import it in your own
configuration files before overriding values.

	Use an environment variable to switch between the configurations.
This can be done from outside the Python interpreter and makes
development and deployment much easier because you can quickly and
easily switch between different configs without having to touch the
code at all. If you are working often on different projects you can
even create your own script for sourcing that activates a virtualenv
and exports the development configuration for you.

	Use a tool like fabric [https://www.fabfile.org/] in production to push code and
configurations separately to the production server(s). For some
details about how to do that, head over to the
Deploying with Fabric pattern.

Instance Folders

New in version 0.8.

Flask 0.8 introduces instance folders. Flask for a long time made it
possible to refer to paths relative to the application’s folder directly
(via Flask.root_path). This was also how many developers loaded
configurations stored next to the application. Unfortunately however this
only works well if applications are not packages in which case the root
path refers to the contents of the package.

With Flask 0.8 a new attribute was introduced:
Flask.instance_path. It refers to a new concept called the
“instance folder”. The instance folder is designed to not be under
version control and be deployment specific. It’s the perfect place to
drop things that either change at runtime or configuration files.

You can either explicitly provide the path of the instance folder when
creating the Flask application or you can let Flask autodetect the
instance folder. For explicit configuration use the instance_path
parameter:

app = Flask(__name__, instance_path='/path/to/instance/folder')

Please keep in mind that this path must be absolute when provided.

If the instance_path parameter is not provided the following default
locations are used:

	Uninstalled module:

/myapp.py
/instance

	Uninstalled package:

/myapp
 /__init__.py
/instance

	Installed module or package:

$PREFIX/lib/pythonX.Y/site-packages/myapp
$PREFIX/var/myapp-instance

$PREFIX is the prefix of your Python installation. This can be
/usr or the path to your virtualenv. You can print the value of
sys.prefix to see what the prefix is set to.

Since the config object provided loading of configuration files from
relative filenames we made it possible to change the loading via filenames
to be relative to the instance path if wanted. The behavior of relative
paths in config files can be flipped between “relative to the application
root” (the default) to “relative to instance folder” via the
instance_relative_config switch to the application constructor:

app = Flask(__name__, instance_relative_config=True)

Here is a full example of how to configure Flask to preload the config
from a module and then override the config from a file in the instance
folder if it exists:

app = Flask(__name__, instance_relative_config=True)
app.config.from_object('yourapplication.default_settings')
app.config.from_pyfile('application.cfg', silent=True)

The path to the instance folder can be found via the
Flask.instance_path. Flask also provides a shortcut to open a
file from the instance folder with Flask.open_instance_resource().

Example usage for both:

filename = os.path.join(app.instance_path, 'application.cfg')
with open(filename) as f:
 config = f.read()

or via open_instance_resource:
with app.open_instance_resource('application.cfg') as f:
 config = f.read()

Signals

There is integrated support for signalling in Citus. This support is provided by the excellent blinker [https://pypi.org/project/blinker/] library and
will gracefully fall back if it is not available.

What are signals? Signals help you decouple applications by sending
notifications when actions occur elsewhere in the core framework or
another Citus extensions. In short, signals allow certain senders to
notify subscribers that something happened.

Citus comes with a couple of signals and other extensions might provide
more. Also keep in mind that signals are intended to notify subscribers
and should not encourage subscribers to modify data. You will notice that
there are signals that appear to do the same thing like some of the
builtin decorators do (eg: request_started is very similar
to before_request()). However, there are differences in
how they work. The core before_request() handler, for
example, is executed in a specific order and is able to abort the request
early by returning a response. In contrast all signal handlers are
executed in undefined order and do not modify any data.

The big advantage of signals over handlers is that you can safely
subscribe to them for just a split second. These temporary
subscriptions are helpful for unit testing for example. Say you want to
know what templates were rendered as part of a request: signals allow you
to do exactly that.

Subscribing to Signals

To subscribe to a signal, you can use the
connect() method of a signal. The first
argument is the function that should be called when the signal is emitted,
the optional second argument specifies a sender. To unsubscribe from a
signal, you can use the disconnect() method.

For all core Citus signals, the sender is the application that issued the
signal. When you subscribe to a signal, be sure to also provide a sender
unless you really want to listen for signals from all applications. This is
especially true if you are developing an extension.

For example, here is a helper context manager that can be used in a unit test
to determine which templates were rendered and what variables were passed
to the template:

from citus import template_rendered
from contextlib import contextmanager

@contextmanager
def captured_templates(app):
 recorded = []
 def record(sender, template, context, **extra):
 recorded.append((template, context))
 template_rendered.connect(record, app)
 try:
 yield recorded
 finally:
 template_rendered.disconnect(record, app)

This can now easily be paired with a test client:

with captured_templates(app) as templates:
 rv = app.test_client().get('/')
 assert rv.status_code == 200
 assert len(templates) == 1
 template, context = templates[0]
 assert template.name == 'index.html'
 assert len(context['items']) == 10

Make sure to subscribe with an extra **extra argument so that your
calls don’t fail if Flask introduces new arguments to the signals.

All the template rendering in the code issued by the application app
in the body of the with block will now be recorded in the templates
variable. Whenever a template is rendered, the template object as well as
context are appended to it.

Additionally there is a convenient helper method
(connected_to()) that allows you to
temporarily subscribe a function to a signal with a context manager on
its own. Because the return value of the context manager cannot be
specified that way, you have to pass the list in as an argument:

from flask import template_rendered

def captured_templates(app, recorded, **extra):
 def record(sender, template, context):
 recorded.append((template, context))
 return template_rendered.connected_to(record, app)

The example above would then look like this:

templates = []
with captured_templates(app, templates, **extra):
 ...
 template, context = templates[0]

Blinker API Changes

The connected_to() method arrived in Blinker
with version 1.1.

Creating Signals

If you want to use signals in your own application, you can use the
blinker library directly. The most common use case are named signals in a
custom Namespace.. This is what is recommended
most of the time:

from blinker import Namespace
my_signals = Namespace()

Now you can create new signals like this:

model_saved = my_signals.signal('model-saved')

The name for the signal here makes it unique and also simplifies
debugging. You can access the name of the signal with the
name attribute.

For Extension Developers

If you are writing a Citus extension and you want to gracefully degrade for
missing blinker installations, you can do so by using the
citus.signals.Namespace class.

Sending Signals

If you want to emit a signal, you can do so by calling the
send() method. It accepts a sender as first
argument and optionally some keyword arguments that are forwarded to the
signal subscribers:

class Model(object):
 ...

 def save(self):
 model_saved.send(self)

Try to always pick a good sender. If you have a class that is emitting a
signal, pass self as sender. If you are emitting a signal from a random
function, you can pass current_app._get_current_object() as sender.

Passing Proxies as Senders

Never pass current_app as sender to a signal. Use
current_app._get_current_object() instead. The reason for this is
that current_app is a proxy and not the real application
object.

Signals and Citus’ Request Context

Signals fully support The Request Context when receiving signals.
Context-local variables are consistently available between
request_started and request_finished, so you can
rely on citus.g and others as needed. Note the limitations described
in Sending Signals and the request_tearing_down signal.

Decorator Based Signal Subscriptions

With Blinker 1.1 you can also easily subscribe to signals by using the new
connect_via() decorator:

from citus import template_rendered

@template_rendered.connect_via(app)
def when_template_rendered(sender, template, context, **extra):
 print(f'Template {template.name} is rendered with {context}')

Core Signals

Take a look at Signals for a list of all builtin signals.

Pluggable Views

The main
intention of pluggable views is that you can replace parts of the implementations and this
way have customizable pluggable views.

Basic Principle

Consider you have a function that loads a list of objects from the
database and renders into a template:

@app.route('/users/')
def show_users(page):
 users = User.query.all()
 return citus.template('users.html', users=users)

This is simple and flexible, but if you want to provide this view in a
generic fashion that can be adapted to other models and templates as well
you might want more flexibility. This is where pluggable class-based
views come into place. As the first step to convert this into a class
based view you would do this:

import citus

class ShowUsers(citus.views.View):

 def dispatch_request(self):
 users = User.query.all()
 return citus.template('users.html', objects=users)

app.add_url_rule('/users/', view_func=ShowUsers.as_view('show_users'))

As you can see what you have to do is to create a subclass of
citus.views.View and implement
dispatch_request(). Then we have to convert that
class into an actual view function by using the
as_view() class method. The string you pass to
that function is the name of the endpoint that view will then have. But
this by itself is not helpful, so let’s refactor the code a bit:

import citus

class ListView(citus.views.View):

 def get_template_name(self):
 raise NotImplementedError()

 def citus.template(self, context):
 return citus.template(self.get_template_name(), **context)

 def dispatch_request(self):
 context = {'objects': self.get_objects()}
 return self.citus.template(context)

class UserView(ListView):

 def get_template_name(self):
 return 'users.html'

 def get_objects(self):
 return User.query.all()

This of course is not that helpful for such a small example, but it’s good
enough to explain the basic principle. When you have a class-based view
the question comes up what self points to. The way this works is that
whenever the request is dispatched a new instance of the class is created
and the dispatch_request() method is called with
the parameters from the URL rule. The class itself is instantiated with
the parameters passed to the as_view() function.
For instance you can write a class like this:

class RenderTemplateView(View):
 def __init__(self, template_name):
 self.template_name = template_name
 def dispatch_request(self):
 return citus.template(self.template_name)

And then you can register it like this:

app.add_url_rule('/about', view_func=RenderTemplateView.as_view(
 'about_page', template_name='about.html'))

Method Hints

Pluggable views are attached to the application like a regular function by
either using route() or better
add_url_rule(). That however also means that you would
have to provide the names of the HTTP methods the view supports when you
attach this. In order to move that information to the class you can
provide a methods attribute that has this
information:

class MyView(View):
 methods = ['GET', 'POST']

 def dispatch_request(self):
 if request.method == 'POST':
 ...
 ...

app.add_url_rule('/myview', view_func=MyView.as_view('myview'))

Method Based Dispatching

For RESTful APIs it’s especially helpful to execute a different function
for each HTTP method. With the citus.views.MethodView you can
easily do that. Each HTTP method maps to a method of the class with the
same name (just in lowercase):

import citus

class UserAPI(citus.views.MethodView):

 def get(self):
 users = User.query.all()
 ...

 def post(self):
 user = User.from_form_data(request.form)
 ...

app.add_url_rule('/users/', view_func=UserAPI.as_view('users'))

That way you also don’t have to provide the
methods attribute. It’s automatically set based
on the methods defined in the class.

Decorating Views

Since the view class itself is not the view function that is added to the
routing system it does not make much sense to decorate the class itself.
Instead you either have to decorate the return value of
as_view() by hand:

def user_required(f):
 """Checks whether user is logged in or raises error 401."""
 def decorator(*args, **kwargs):
 if not g.user:
 abort(401)
 return f(*args, **kwargs)
 return decorator

view = user_required(UserAPI.as_view('users'))
app.add_url_rule('/users/', view_func=view)

Starting with Flask 0.8 there is also an alternative way where you can
specify a list of decorators to apply in the class declaration:

class UserAPI(MethodView):
 decorators = [user_required]

Due to the implicit self from the caller’s perspective you cannot use
regular view decorators on the individual methods of the view however,
keep this in mind.

Method Views for APIs

Web APIs are often working very closely with HTTP verbs so it makes a lot
of sense to implement such an API based on the
MethodView. That said, you will notice that the API
will require different URL rules that go to the same method view most of
the time. For instance consider that you are exposing a user object on
the web:

	URL

	Method

	Description

	/users/

	GET

	Gives a list of all users

	/users/

	POST

	Creates a new user

	/users/<id>

	GET

	Shows a single user

	/users/<id>

	PUT

	Updates a single user

	/users/<id>

	DELETE

	Deletes a single user

So how would you go about doing that with the
MethodView? The trick is to take advantage of the
fact that you can provide multiple rules to the same view.

Let’s assume for the moment the view would look like this:

class UserAPI(MethodView):

 def get(self, user_id):
 if user_id is None:
 # return a list of users
 pass
 else:
 # expose a single user
 pass

 def post(self):
 # create a new user
 pass

 def delete(self, user_id):
 # delete a single user
 pass

 def put(self, user_id):
 # update a single user
 pass

So how do we hook this up with the routing system? By adding two rules
and explicitly mentioning the methods for each:

user_view = UserAPI.as_view('user_api')
app.add_url_rule('/users/', defaults={'user_id': None},
 view_func=user_view, methods=['GET',])
app.add_url_rule('/users/', view_func=user_view, methods=['POST',])
app.add_url_rule('/users/<int:user_id>', view_func=user_view,
 methods=['GET', 'PUT', 'DELETE'])

If you have a lot of APIs that look similar you can refactor that
registration code:

def register_api(view, endpoint, url, pk='id', pk_type='int'):
 view_func = view.as_view(endpoint)
 app.add_url_rule(url, defaults={pk: None},
 view_func=view_func, methods=['GET',])
 app.add_url_rule(url, view_func=view_func, methods=['POST',])
 app.add_url_rule(f'{url}<{pk_type}:{pk}>', view_func=view_func,
 methods=['GET', 'PUT', 'DELETE'])

register_api(UserAPI, 'user_api', '/users/', pk='user_id')

The Application Context

The application context keeps track of the application-level data during
a request, CLI command, or other activity. Rather than passing the
application around to each function, the current_app and
g proxies are accessed instead.

This is similar to The Request Context, which keeps track of
request-level data during a request. A corresponding application context
is pushed when a request context is pushed.

Purpose of the Context

The Flask application object has attributes, such as
config, that are useful to access within views and
CLI commands. However, importing the app instance
within the modules in your project is prone to circular import issues.
When using the app factory pattern or
writing reusable blueprints or
extensions there won’t be an app instance to
import at all.

Flask solves this issue with the application context. Rather than
referring to an app directly, you use the current_app
proxy, which points to the application handling the current activity.

Flask automatically pushes an application context when handling a
request. View functions, error handlers, and other functions that run
during a request will have access to current_app.

Flask will also automatically push an app context when running CLI
commands registered with Flask.cli using @app.cli.command().

Lifetime of the Context

The application context is created and destroyed as necessary. When a
Flask application begins handling a request, it pushes an application
context and a request context. When the request
ends it pops the request context then the application context.
Typically, an application context will have the same lifetime as a
request.

See The Request Context for more information about how the contexts work
and the full life cycle of a request.

Manually Push a Context

If you try to access current_app, or anything that uses it,
outside an application context, you’ll get this error message:

RuntimeError: Working outside of application context.

This typically means that you attempted to use functionality that
needed to interface with the current application object in some way.
To solve this, set up an application context with app.app_context().

If you see that error while configuring your application, such as when
initializing an extension, you can push a context manually since you
have direct access to the app. Use app_context() in a
with block, and everything that runs in the block will have access
to current_app.

def create_app():
 app = Flask(__name__)

 with app.app_context():
 init_db()

 return app

If you see that error somewhere else in your code not related to
configuring the application, it most likely indicates that you should
move that code into a view function or CLI command.

Storing Data

The application context is a good place to store common data during a
request or CLI command. Flask provides the g object for this
purpose. It is a simple namespace object that has the same lifetime as
an application context.

Note

The g name stands for “global”, but that is referring to the
data being global within a context. The data on g is lost
after the context ends, and it is not an appropriate place to store
data between requests. Use the session or a database to
store data across requests.

A common use for g is to manage resources during a request.

	get_X() creates resource X if it does not exist, caching it
as g.X.

	teardown_X() closes or otherwise deallocates the resource if it
exists. It is registered as a teardown_appcontext()
handler.

For example, you can manage a database connection using this pattern:

from flask import g

def get_db():
 if 'db' not in g:
 g.db = connect_to_database()

 return g.db

@app.teardown_appcontext
def teardown_db(exception):
 db = g.pop('db', None)

 if db is not None:
 db.close()

During a request, every call to get_db() will return the same
connection, and it will be closed automatically at the end of the
request.

You can use LocalProxy to make a new context
local from get_db():

from werkzeug.local import LocalProxy
db = LocalProxy(get_db)

Accessing db will call get_db internally, in the same way that
current_app works.

If you’re writing an extension, g should be reserved for user
code. You may store internal data on the context itself, but be sure to
use a sufficiently unique name. The current context is accessed with
_app_ctx_stack.top. For more information see
Flask Extension Development.

Events and Signals

The application will call functions registered with
teardown_appcontext() when the application context is
popped.

If signals_available is true, the following signals are
sent: appcontext_pushed, appcontext_tearing_down, and
appcontext_popped.

The Request Context

The request context keeps track of the request-level data during a
request. Rather than passing the request object to each function that
runs during a request, the request and session proxies
are accessed instead.

This is similar to The Application Context, which keeps track of the
application-level data independent of a request. A corresponding
application context is pushed when a request context is pushed.

Purpose of the Context

When the API application handles a request, it creates a
Request object based on the environment it received from the
WSGI server. Because a worker (thread, process, or coroutine depending
on the server) handles only one request at a time, the request data can
be considered global to that worker during that request. Citus uses the
term context local for this.

Citus automatically pushes a request context when handling a request.
View functions, error handlers, and other functions that run during a
request will have access to the request proxy, which points to
the request object for the current request.

Lifetime of the Context

When a Citus application begins handling a request, it pushes a request
context, which also pushes an app context. When the
request ends it pops the request context then the application context.

The context is unique to each thread (or other worker type).
request cannot be passed to another thread, the other thread
will have a different context stack and will not know about the request
the parent thread was pointing to.

Context locals are implemented in Werkzeug. See werkzeug:local
for more information on how this works internally.

Manually Push a Context

If you try to access request, or anything that uses it, outside
a request context, you’ll get this error message:

RuntimeError: Working outside of request context.

This typically means that you attempted to use functionality that
needed an active HTTP request. Consult the documentation on testing
for information about how to avoid this problem.

This should typically only happen when testing code that expects an
active request. One option is to use the
test client to simulate a full request. Or
you can use test_request_context() in a with block, and
everything that runs in the block will have access to request,
populated with your test data.

def generate_report(year):
 format = request.args.get('format')
 ...

with app.test_request_context(
 '/make_report/2017', data={'format': 'short'}):
 generate_report()

If you see that error somewhere else in your code not related to
testing, it most likely indicates that you should move that code into a
view function.

For information on how to use the request context from the interactive
Python shell, see Working with the Shell.

How the Context Works

The API.wsgi_app() method is called to handle each request. It
manages the contexts during the request. Internally, the request and
application contexts work as stacks, _request_ctx_stack and
_app_ctx_stack. When contexts are pushed onto the stack, the
proxies that depend on them are available and point at information from
the top context on the stack.

When the request starts, a RequestContext is created and
pushed, which creates and pushes an AppContext first if
a context for that application is not already the top context. While
these contexts are pushed, the current_app, g,
request, and session proxies are available to the
original thread handling the request.

Because the contexts are stacks, other contexts may be pushed to change
the proxies during a request. While this is not a common pattern, it
can be used in advanced applications to, for example, do internal
redirects or chain different applications together.

After the request is dispatched and a response is generated and sent,
the request context is popped, which then pops the application context.
Immediately before they are popped, the teardown_request()
and teardown_appcontext() functions are executed. These
execute even if an unhandled exception occurred during dispatch.

Callbacks and Errors

Flask dispatches a request in multiple stages which can affect the
request, response, and how errors are handled. The contexts are active
during all of these stages.

A Blueprint can add handlers for these events that are specific
to the blueprint. The handlers for a blueprint will run if the blueprint
owns the route that matches the request.

	Before each request, before_request() functions are
called. If one of these functions return a value, the other
functions are skipped. The return value is treated as the response
and the view function is not called.

	If the before_request() functions did not return a
response, the view function for the matched route is called and
returns a response.

	The return value of the view is converted into an actual response
object and passed to the after_request()
functions. Each function returns a modified or new response object.

	After the response is returned, the contexts are popped, which calls
the teardown_request() and
teardown_appcontext() functions. These functions are
called even if an unhandled exception was raised at any point above.

If an exception is raised before the teardown functions, Flask tries to
match it with an errorhandler() function to handle the
exception and return a response. If no error handler is found, or the
handler itself raises an exception, Citus returns a generic
500 Internal Server Error response. The teardown functions are still
called, and are passed the exception object.

If debug mode is enabled, unhandled exceptions are not converted to a
500 response and instead are propagated to the WSGI server. This
allows the development server to present the interactive debugger with
the traceback.

Teardown Callbacks

The teardown callbacks are independent of the request dispatch, and are
instead called by the contexts when they are popped. The functions are
called even if there is an unhandled exception during dispatch, and for
manually pushed contexts. This means there is no guarantee that any
other parts of the request dispatch have run first. Be sure to write
these functions in a way that does not depend on other callbacks and
will not fail.

During testing, it can be useful to defer popping the contexts after the
request ends, so that their data can be accessed in the test function.
Use the test_client() as a with block to preserve the
contexts until the with block exits.

import citus

app = citus.API()

@app.route('/')
def hello():
 print('during view')
 return 'Hello, World!'

@app.teardown_request
def show_teardown(exception):
 print('after with block')

with app.test_request_context():
 print('during with block')

teardown functions are called after the context with block exits

with app.test_client() as client:
 client.get('/')
 # the contexts are not popped even though the request ended
 print(citus.request.path)

the contexts are popped and teardown functions are called after
the client with block exits

Signals

If signals_available is true, the following signals are
sent:

	request_started is sent before the
before_request() functions are called.

	request_finished is sent after the
after_request() functions are called.

	got_request_exception is sent when an exception begins to
be handled, but before an errorhandler() is looked up or
called.

	request_tearing_down is sent after the
teardown_request() functions are called.

Context Preservation on Error

At the end of a request, the request context is popped and all data
associated with it is destroyed. If an error occurs during development,
it is useful to delay destroying the data for debugging purposes.

When the development server is running in development mode (the
CITUS_ENV environment variable is set to 'development'), the
error and data will be preserved and shown in the interactive debugger.

This behavior can be controlled with the
PRESERVE_CONTEXT_ON_EXCEPTION config. As described above, it
defaults to True in the development environment.

Do not enable PRESERVE_CONTEXT_ON_EXCEPTION in production, as it
will cause your application to leak memory on exceptions.

Notes On Proxies

Some of the objects provided by Flask are proxies to other objects. The
proxies are accessed in the same way for each worker thread, but
point to the unique object bound to each worker behind the scenes as
described on this page.

Most of the time you don’t have to care about that, but there are some
exceptions where it is good to know that this object is actually a proxy:

	The proxy objects cannot fake their type as the actual object types.
If you want to perform instance checks, you have to do that on the
object being proxied.

	The reference to the proxied object is needed in some situations,
such as sending Signals or passing data to a background
thread.

If you need to access the underlying object that is proxied, use the
_get_current_object() method:

app = current_app._get_current_object()
my_signal.send(app)

Modular Applications with Blueprints

New in version 0.7.

Flask uses a concept of blueprints for making application components and
supporting common patterns within an application or across applications.
Blueprints can greatly simplify how large applications work and provide a
central means for Flask extensions to register operations on applications.
A Blueprint object works similarly to a Flask
application object, but it is not actually an application. Rather it is a
blueprint of how to construct or extend an application.

Why Blueprints?

Blueprints in Flask are intended for these cases:

	Factor an application into a set of blueprints. This is ideal for
larger applications; a project could instantiate an application object,
initialize several extensions, and register a collection of blueprints.

	Register a blueprint on an application at a URL prefix and/or subdomain.
Parameters in the URL prefix/subdomain become common view arguments
(with defaults) across all view functions in the blueprint.

	Register a blueprint multiple times on an application with different URL
rules.

	Provide template filters, static files, templates, and other utilities
through blueprints. A blueprint does not have to implement applications
or view functions.

	Register a blueprint on an application for any of these cases when
initializing a Flask extension.

A blueprint in Flask is not a pluggable app because it is not actually an
application – it’s a set of operations which can be registered on an
application, even multiple times. Why not have multiple application
objects? You can do that (see Application Dispatching), but your
applications will have separate configs and will be managed at the WSGI
layer.

Blueprints instead provide separation at the Flask level, share
application config, and can change an application object as necessary with
being registered. The downside is that you cannot unregister a blueprint
once an application was created without having to destroy the whole
application object.

The Concept of Blueprints

The basic concept of blueprints is that they record operations to execute
when registered on an application. Flask associates view functions with
blueprints when dispatching requests and generating URLs from one endpoint
to another.

My First Blueprint

This is what a very basic blueprint looks like. In this case we want to
implement a blueprint that does simple rendering of static templates:

from flask import Blueprint, render_template, abort
from jinja2 import TemplateNotFound

simple_page = Blueprint('simple_page', __name__,
 template_folder='templates')

@simple_page.route('/', defaults={'page': 'index'})
@simple_page.route('/<page>')
def show(page):
 try:
 return render_template(f'pages/{page}.html')
 except TemplateNotFound:
 abort(404)

When you bind a function with the help of the @simple_page.route
decorator, the blueprint will record the intention of registering the
function show on the application when it’s later registered.
Additionally it will prefix the endpoint of the function with the
name of the blueprint which was given to the Blueprint
constructor (in this case also simple_page). The blueprint’s name
does not modify the URL, only the endpoint.

Registering Blueprints

So how do you register that blueprint? Like this:

from flask import Flask
from yourapplication.simple_page import simple_page

app = Flask(__name__)
app.register_blueprint(simple_page)

If you check the rules registered on the application, you will find
these:

>>> app.url_map
Map([<Rule '/static/<filename>' (HEAD, OPTIONS, GET) -> static>,
 <Rule '/<page>' (HEAD, OPTIONS, GET) -> simple_page.show>,
 <Rule '/' (HEAD, OPTIONS, GET) -> simple_page.show>])

The first one is obviously from the application itself for the static
files. The other two are for the show function of the simple_page
blueprint. As you can see, they are also prefixed with the name of the
blueprint and separated by a dot (.).

Blueprints however can also be mounted at different locations:

app.register_blueprint(simple_page, url_prefix='/pages')

And sure enough, these are the generated rules:

>>> app.url_map
Map([<Rule '/static/<filename>' (HEAD, OPTIONS, GET) -> static>,
 <Rule '/pages/<page>' (HEAD, OPTIONS, GET) -> simple_page.show>,
 <Rule '/pages/' (HEAD, OPTIONS, GET) -> simple_page.show>])

On top of that you can register blueprints multiple times though not every
blueprint might respond properly to that. In fact it depends on how the
blueprint is implemented if it can be mounted more than once.

Nesting Blueprints

It is possible to register a blueprint on another blueprint.

parent = Blueprint('parent', __name__, url_prefix='/parent')
child = Blueprint('child', __name__, url_prefix='/child')
parent.register_blueprint(child)
app.register_blueprint(parent)

The child blueprint will gain the parent’s name as a prefix to its
name, and child URLs will be prefixed with the parent’s URL prefix.

url_for('parent.child.create')
/parent/child/create

Blueprint-specific before request functions, etc. registered with the
parent will trigger for the child. If a child does not have an error
handler that can handle a given exception, the parent’s will be tried.

Blueprint Resources

Blueprints can provide resources as well. Sometimes you might want to
introduce a blueprint only for the resources it provides.

Blueprint Resource Folder

Like for regular applications, blueprints are considered to be contained
in a folder. While multiple blueprints can originate from the same folder,
it does not have to be the case and it’s usually not recommended.

The folder is inferred from the second argument to Blueprint which
is usually __name__. This argument specifies what logical Python
module or package corresponds to the blueprint. If it points to an actual
Python package that package (which is a folder on the filesystem) is the
resource folder. If it’s a module, the package the module is contained in
will be the resource folder. You can access the
Blueprint.root_path property to see what the resource folder is:

>>> simple_page.root_path
'/Users/username/TestProject/yourapplication'

To quickly open sources from this folder you can use the
open_resource() function:

with simple_page.open_resource('static/style.css') as f:
 code = f.read()

Static Files

A blueprint can expose a folder with static files by providing the path
to the folder on the filesystem with the static_folder argument.
It is either an absolute path or relative to the blueprint’s location:

admin = Blueprint('admin', __name__, static_folder='static')

By default the rightmost part of the path is where it is exposed on the
web. This can be changed with the static_url_path argument. Because the
folder is called static here it will be available at the
url_prefix of the blueprint + /static. If the blueprint
has the prefix /admin, the static URL will be /admin/static.

The endpoint is named blueprint_name.static. You can generate URLs
to it with url_for() like you would with the static folder of the
application:

url_for('admin.static', filename='style.css')

However, if the blueprint does not have a url_prefix, it is not
possible to access the blueprint’s static folder. This is because the
URL would be /static in this case, and the application’s /static
route takes precedence. Unlike template folders, blueprint static
folders are not searched if the file does not exist in the application
static folder.

Templates

If you want the blueprint to expose templates you can do that by providing
the template_folder parameter to the Blueprint constructor:

admin = Blueprint('admin', __name__, template_folder='templates')

For static files, the path can be absolute or relative to the blueprint
resource folder.

The template folder is added to the search path of templates but with a lower
priority than the actual application’s template folder. That way you can
easily override templates that a blueprint provides in the actual application.
This also means that if you don’t want a blueprint template to be accidentally
overridden, make sure that no other blueprint or actual application template
has the same relative path. When multiple blueprints provide the same relative
template path the first blueprint registered takes precedence over the others.

So if you have a blueprint in the folder yourapplication/admin and you
want to render the template 'admin/index.html' and you have provided
templates as a template_folder you will have to create a file like
this: yourapplication/admin/templates/admin/index.html. The reason
for the extra admin folder is to avoid getting our template overridden
by a template named index.html in the actual application template
folder.

To further reiterate this: if you have a blueprint named admin and you
want to render a template called index.html which is specific to this
blueprint, the best idea is to lay out your templates like this:

yourpackage/
 blueprints/
 admin/
 templates/
 admin/
 index.html
 __init__.py

And then when you want to render the template, use admin/index.html as
the name to look up the template by. If you encounter problems loading
the correct templates enable the EXPLAIN_TEMPLATE_LOADING config
variable which will instruct Flask to print out the steps it goes through
to locate templates on every render_template call.

Building URLs

If you want to link from one page to another you can use the
url_for() function just like you normally would do just that you
prefix the URL endpoint with the name of the blueprint and a dot (.):

url_for('admin.index')

Additionally if you are in a view function of a blueprint or a rendered
template and you want to link to another endpoint of the same blueprint,
you can use relative redirects by prefixing the endpoint with a dot only:

url_for('.index')

This will link to admin.index for instance in case the current request
was dispatched to any other admin blueprint endpoint.

Blueprint Error Handlers

Blueprints support the errorhandler decorator just like the Flask
application object, so it is easy to make Blueprint-specific custom error
pages.

Here is an example for a “404 Page Not Found” exception:

@simple_page.errorhandler(404)
def page_not_found(e):
 return render_template('pages/404.html')

Most errorhandlers will simply work as expected; however, there is a caveat
concerning handlers for 404 and 405 exceptions. These errorhandlers are only
invoked from an appropriate raise statement or a call to abort in another
of the blueprint’s view functions; they are not invoked by, e.g., an invalid URL
access. This is because the blueprint does not “own” a certain URL space, so
the application instance has no way of knowing which blueprint error handler it
should run if given an invalid URL. If you would like to execute different
handling strategies for these errors based on URL prefixes, they may be defined
at the application level using the request proxy object:

@app.errorhandler(404)
@app.errorhandler(405)
def _handle_api_error(ex):
 if request.path.startswith('/api/'):
 return jsonify(error=str(ex)), ex.code
 else:
 return ex

See Handling Application Errors.

Extensions

Extensions are extra packages that add functionality to a Citus
application. For example, an extension might add support for sending
email or connecting to a database. Some extensions add entire new
frameworks to help build certain types of applications, like a REST API.

Finding Extensions

Citus extensions are usually named “Citus-Foo”. You can
search PyPI for packages tagged with Framework :: Citus [https://pypi.org/search/?c=Framework+%3A%3A+Flask].

Using Extensions

Consult each extension’s documentation for installation, configuration,
and usage instructions. Generally, extensions pull their own
configuration from app.config and are
passed an application instance during initialization. For example,
an extension called “Flask-Foo” might be used like this:

from citus_foo import Foo
import citus

foo = Foo()

app = citus.API()
app.config.update(
 FOO_BAR='baz',
 FOO_SPAM='eggs',
)

foo.init_app(app)

Building Extensions

While the PyPI [https://pypi.org/search/?c=Framework+%3A%3A+Flask] contains many Flask extensions, you may
not find an extension that fits your need. If this is the case, you can
create your own. Read Flask Extension Development to develop your own Citus
extension.

Command Line Interface

Installing Flask installs the flask script, a Click [https://click.palletsprojects.com/] command line
interface, in your virtualenv. Executed from the terminal, this script gives
access to built-in, extension, and application-defined commands. The --help
option will give more information about any commands and options.

Application Discovery

The flask command is installed by Flask, not your application; it must be
told where to find your application in order to use it. The FLASK_APP
environment variable is used to specify how to load the application.

While FLASK_APP supports a variety of options for specifying your
application, most use cases should be simple. Here are the typical values:

	(nothing)
	The name “app” or “wsgi” is imported (as a “.py” file, or package),
automatically detecting an app (app or application) or
factory (create_app or make_app).

	FLASK_APP=hello
	The given name is imported, automatically detecting an app (app
or application) or factory (create_app or make_app).

FLASK_APP has three parts: an optional path that sets the current working
directory, a Python file or dotted import path, and an optional variable
name of the instance or factory. If the name is a factory, it can optionally
be followed by arguments in parentheses. The following values demonstrate these
parts:

	FLASK_APP=src/hello
	Sets the current working directory to src then imports hello.

	FLASK_APP=hello.web
	Imports the path hello.web.

	FLASK_APP=hello:app2
	Uses the app2 Flask instance in hello.

	FLASK_APP="hello:create_app('dev')"
	The create_app factory in hello is called with the string 'dev'
as the argument.

If FLASK_APP is not set, the command will try to import “app” or
“wsgi” (as a “.py” file, or package) and try to detect an application
instance or factory.

Within the given import, the command looks for an application instance named
app or application, then any application instance. If no instance is
found, the command looks for a factory function named create_app or
make_app that returns an instance.

If parentheses follow the factory name, their contents are parsed as
Python literals and passed as arguments and keyword arguments to the
function. This means that strings must still be in quotes.

Run the Development Server

The run command will start the development server. It
replaces the Flask.run() method in most cases.

$ flask run
 * Serving Flask app "hello"
 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

Warning

Do not use this command to run your application in production.
Only use the development server during development. The development server
is provided for convenience, but is not designed to be particularly secure,
stable, or efficient. See Deployment Options for how to run in production.

If another program is already using port 5000, you’ll see
OSError: [Errno 98] or OSError: [WinError 10013] when the
server tries to start. See Address already in use for how to
handle that.

Open a Shell

To explore the data in your application, you can start an interactive Python
shell with the shell command. An application
context will be active, and the app instance will be imported.

$ flask shell
Python 3.10.0 (default, Oct 27 2021, 06:59:51) [GCC 11.1.0] on linux
App: example [production]
Instance: /home/david/Projects/pallets/flask/instance
>>>

Use shell_context_processor() to add other automatic imports.

Environments

New in version 1.0.

The environment in which the Flask app runs is set by the
FLASK_ENV environment variable. If not set it defaults to
production. The other recognized environment is development.
Flask and extensions may choose to enable behaviors based on the
environment.

If the env is set to development, the flask command will enable
debug mode and flask run will enable the interactive debugger and
reloader.

Watch Extra Files with the Reloader

When using development mode, the reloader will trigger whenever your
Python code or imported modules change. The reloader can watch
additional files with the --extra-files option, or the
FLASK_RUN_EXTRA_FILES environment variable. Multiple paths are
separated with :, or ; on Windows.

Debug Mode

Debug mode will be enabled when FLASK_ENV is development,
as described above. If you want to control debug mode separately, use
FLASK_DEBUG. The value 1 enables it, 0 disables it.

Environment Variables From dotenv

Rather than setting FLASK_APP each time you open a new terminal, you can
use Flask’s dotenv support to set environment variables automatically.

If python-dotenv [https://github.com/theskumar/python-dotenv#readme] is installed, running the flask command will set
environment variables defined in the files .env and .flaskenv.
This can be used to avoid having to set FLASK_APP manually every time you
open a new terminal, and to set configuration using environment variables
similar to how some deployment services work.

Variables set on the command line are used over those set in .env,
which are used over those set in .flaskenv. .flaskenv should be
used for public variables, such as FLASK_APP, while .env should not
be committed to your repository so that it can set private variables.

Directories are scanned upwards from the directory you call flask
from to locate the files. The current working directory will be set to the
location of the file, with the assumption that that is the top level project
directory.

The files are only loaded by the flask command or calling
run(). If you would like to load these files when running in
production, you should call load_dotenv() manually.

Setting Command Options

Click is configured to load default values for command options from
environment variables. The variables use the pattern
FLASK_COMMAND_OPTION. For example, to set the port for the run
command, instead of flask run --port 8000:

These can be added to the .flaskenv file just like FLASK_APP to
control default command options.

Disable dotenv

The flask command will show a message if it detects dotenv files but
python-dotenv is not installed.

$ flask run
 * Tip: There are .env files present. Do "pip install python-dotenv" to use them.

You can tell Flask not to load dotenv files even when python-dotenv is
installed by setting the FLASK_SKIP_DOTENV environment variable.
This can be useful if you want to load them manually, or if you’re using
a project runner that loads them already. Keep in mind that the
environment variables must be set before the app loads or it won’t
configure as expected.

Environment Variables From virtualenv

If you do not want to install dotenv support, you can still set environment
variables by adding them to the end of the virtualenv’s activate
script. Activating the virtualenv will set the variables.

It is preferred to use dotenv support over this, since .flaskenv can be
committed to the repository so that it works automatically wherever the project
is checked out.

Custom Commands

The flask command is implemented using Click [https://click.palletsprojects.com/]. See that project’s
documentation for full information about writing commands.

This example adds the command create-user that takes the argument
name.

import click
from flask import Flask

app = Flask(__name__)

@app.cli.command("create-user")
@click.argument("name")
def create_user(name):
 ...

$ flask create-user admin

This example adds the same command, but as user create, a command in a
group. This is useful if you want to organize multiple related commands.

import click
from flask import Flask
from flask.cli import AppGroup

app = Flask(__name__)
user_cli = AppGroup('user')

@user_cli.command('create')
@click.argument('name')
def create_user(name):
 ...

app.cli.add_command(user_cli)

$ flask user create demo

See Testing CLI Commands for an overview of how to test your custom
commands.

Registering Commands with Blueprints

If your application uses blueprints, you can optionally register CLI
commands directly onto them. When your blueprint is registered onto your
application, the associated commands will be available to the flask
command. By default, those commands will be nested in a group matching
the name of the blueprint.

from flask import Blueprint

bp = Blueprint('students', __name__)

@bp.cli.command('create')
@click.argument('name')
def create(name):
 ...

app.register_blueprint(bp)

$ flask students create alice

You can alter the group name by specifying the cli_group parameter
when creating the Blueprint object, or later with
app.register_blueprint(bp, cli_group='...').
The following are equivalent:

bp = Blueprint('students', __name__, cli_group='other')
or
app.register_blueprint(bp, cli_group='other')

$ flask other create alice

Specifying cli_group=None will remove the nesting and merge the
commands directly to the application’s level:

bp = Blueprint('students', __name__, cli_group=None)
or
app.register_blueprint(bp, cli_group=None)

$ flask create alice

Application Context

Commands added using the Flask app’s cli
command() decorator will be executed with an application
context pushed, so your command and extensions have access to the app and its
configuration. If you create a command using the Click command()
decorator instead of the Flask decorator, you can use
with_appcontext() to get the same behavior.

import click
from flask.cli import with_appcontext

@click.command()
@with_appcontext
def do_work():
 ...

app.cli.add_command(do_work)

If you’re sure a command doesn’t need the context, you can disable it:

@app.cli.command(with_appcontext=False)
def do_work():
 ...

Plugins

Flask will automatically load commands specified in the flask.commands
entry point [https://packaging.python.org/tutorials/packaging-projects/#entry-points]. This is useful for extensions that want to add commands when
they are installed. Entry points are specified in setup.py

from setuptools import setup

setup(
 name='flask-my-extension',
 ...,
 entry_points={
 'flask.commands': [
 'my-command=flask_my_extension.commands:cli'
],
 },
)

Inside flask_my_extension/commands.py you can then export a Click
object:

import click

@click.command()
def cli():
 ...

Once that package is installed in the same virtualenv as your Flask project,
you can run flask my-command to invoke the command.

Custom Scripts

When you are using the app factory pattern, it may be more convenient to define
your own Click script. Instead of using FLASK_APP and letting Flask load
your application, you can create your own Click object and export it as a
console script [https://packaging.python.org/tutorials/packaging-projects/#console-scripts] entry point.

Create an instance of FlaskGroup and pass it the factory:

import click
from flask import Flask
from flask.cli import FlaskGroup

def create_app():
 app = Flask('wiki')
 # other setup
 return app

@click.group(cls=FlaskGroup, create_app=create_app)
def cli():
 """Management script for the Wiki application."""

Define the entry point in setup.py:

from setuptools import setup

setup(
 name='flask-my-extension',
 ...,
 entry_points={
 'console_scripts': [
 'wiki=wiki:cli'
],
 },
)

Install the application in the virtualenv in editable mode and the custom
script is available. Note that you don’t need to set FLASK_APP.

$ pip install -e .
$ wiki run

Errors in Custom Scripts

When using a custom script, if you introduce an error in your
module-level code, the reloader will fail because it can no longer
load the entry point.

The flask command, being separate from your code, does not have
this issue and is recommended in most cases.

PyCharm Integration

PyCharm Professional provides a special Flask run configuration. For
the Community Edition, we need to configure it to call the flask run
CLI command with the correct environment variables. These instructions
should be similar for any other IDE you might want to use.

In PyCharm, with your project open, click on Run from the menu bar and
go to Edit Configurations. You’ll be greeted by a screen similar to
this:

[image: Screenshot of PyCharms's run configuration settings.]
There’s quite a few options to change, but once we’ve done it for one
command, we can easily copy the entire configuration and make a single
tweak to give us access to other commands, including any custom ones you
may implement yourself.

Click the + (Add New Configuration) button and select Python. Give
the configuration a name such as “flask run”. For the flask run
command, check “Single instance only” since you can’t run the server
more than once at the same time.

Select Module name from the dropdown (A) then input flask.

The Parameters field (B) is set to the CLI command to execute
(with any arguments). In this example we use run, which will run
the development server.

You can skip this next step if you’re using Environment Variables From dotenv. We need to
add an environment variable (C) to identify our application. Click
on the browse button and add an entry with FLASK_APP on the left and
the Python import or file on the right (hello for example). Add an
entry with FLASK_ENV and set it to development.

Next we need to set the working directory (D) to be the folder where
our application resides.

If you have installed your project as a package in your virtualenv, you
may untick the PYTHONPATH options (E). This will more accurately
match how you deploy the app later.

Click Apply to save the configuration, or OK to save and close the
window. Select the configuration in the main PyCharm window and click
the play button next to it to run the server.

Now that we have a configuration which runs flask run from within
PyCharm, we can copy that configuration and alter the Script argument
to run a different CLI command, e.g. flask shell.

Development Server

Citus provides a run command to run the application with a
development server. In development mode, this server provides an
interactive debugger and will reload when code is changed.

Warning

Do not use the development server when deploying to production. It
is intended for use only during local development. It is not
designed to be particularly efficient, stable, or secure.

See Deployment Options for deployment options.

Command Line

The citus run command line script is the recommended way to run the
development server. It requires setting the CITUS_APP environment
variable to point to your application, and CITUS_ENV=development to
fully enable development mode.

This enables the development environment, including the interactive
debugger and reloader, and then starts the server on
http://localhost:8000/. Use cts run --help to see the available
options, and Command Line Interface for detailed instructions about configuring
and using the CLI.

Address already in use

If another program is already using port 8000, you’ll see an OSError
when the server tries to start. It may have one of the following
messages:

	OSError: [Errno 98] Address already in use

	OSError: [WinError 10013] An attempt was made to access a socket
in a way forbidden by its access permissions

Either identify and stop the other program, or use
cts run --port 8001 to pick a different port.

You can use netstat or lsof to identify what process id is using
a port, then use other operating system tools stop that process. The
following example shows that process id 6847 is using port 8000.

macOS Monterey and later automatically starts a service that uses port
8000. To disable the service, go to System Preferences, Sharing, and
disable “AirPlay Receiver”.

Lazy or Eager Loading

When using the citus run command with the reloader, the server will
continue to run even if you introduce syntax errors or other
initialization errors into the code. Accessing the site will show the
interactive debugger for the error, rather than crashing the server.
This feature is called “lazy loading”.

If a syntax error is already present when calling citus run, it will
fail immediately and show the traceback rather than waiting until the
site is accessed. This is intended to make errors more visible initially
while still allowing the server to handle errors on reload.

To override this behavior and always fail immediately, even on reload,
pass the --eager-loading option. To always keep the server running,
even on the initial call, pass --lazy-loading.

In Code

As an alternative to the citus run command, the development server
can also be started from Python with the API.run() method. This
method takes arguments similar to the CLI options to control the server.
The main difference from the CLI command is that the server will crash
if there are errors when reloading.

debug=True can be passed to enable the debugger and reloader, but
the CITUS_ENV=development environment variable is still required to
fully enable development mode.

Place the call in a main block, otherwise it will interfere when trying
to import and run the application with a production server later.

if __name__ == "__main__":
 app.run(debug=True)

$ python hello.py

Working with the Shell

One of the reasons everybody loves Python is the interactive shell. It
basically allows you to execute Python commands in real time and
immediately get results back. Citus itself does not come with an
interactive shell, because it does not require any specific setup upfront,
just import your application and start playing around.

There are however some handy helpers to make playing around in the shell a
more pleasant experience. The main issue with interactive console
sessions is that you’re not triggering a request like a browser does which
means that g, request and others are not
available. But the code you want to test might depend on them, so what
can you do?

This is where some helper functions come in handy. Keep in mind however
that these functions are not only there for interactive shell usage, but
also for unit testing and other situations that require a faked request
context.

Generally it’s recommended that you read The Request Context first.

Command Line Interface

The recommended way to work with the shell is the
citus shell command which does a lot of this automatically for you.
For instance the shell is automatically initialized with a loaded
application context.

For more information see Command Line Interface.

Creating a Request Context

The easiest way to create a proper request context from the shell is by
using the test_request_context method which creates
us a RequestContext:

>>> ctx = app.test_request_context()

Normally you would use the with statement to make this request object
active, but in the shell it’s easier to use the
push() and
pop() methods by hand:

>>> ctx.push()

From that point onwards you can work with the request object until you
call pop:

>>> ctx.pop()

Firing Before/After Request

By just creating a request context, you still don’t have run the code that
is normally run before a request. This might result in your database
being unavailable if you are connecting to the database in a
before-request callback or the current user not being stored on the
g object etc.

This however can easily be done yourself. Just call
preprocess_request():

>>> ctx = app.test_request_context()
>>> ctx.push()
>>> app.preprocess_request()

Keep in mind that the preprocess_request() function
might return a response object, in that case just ignore it.

To shutdown a request, you need to trick a bit before the after request
functions (triggered by process_response()) operate on
a response object:

>>> app.process_response(app.response_class())
<Response 0 bytes [200 OK]>
>>> ctx.pop()

The functions registered as teardown_request() are
automatically called when the context is popped. So this is the perfect
place to automatically tear down resources that were needed by the request
context (such as database connections).

Further Improving the Shell Experience

If you like the idea of experimenting in a shell, create yourself a module
with stuff you want to star import into your interactive session. There
you could also define some more helper methods for common things such as
initializing the database, dropping tables etc.

Just put them into a module (like shelltools) and import from there:

>>> from shelltools import *

Patterns for Flask

Certain features and interactions are common enough that you will find
them in most web applications. For example, many applications use a
relational database and user authentication. They will open a database
connection at the beginning of the request and get the information for
the logged in user. At the end of the request, the database connection
is closed.

These types of patterns may be a bit outside the scope of Flask itself,
but Flask makes it easy to implement them. Some common patterns are
collected in the following pages.

	Large Applications as Packages
	Simple Packages

	Working with Blueprints

	Application Factories
	Basic Factories

	Factories & Extensions

	Using Applications

	Factory Improvements

	Application Dispatching
	Working with this Document

	Combining Applications

	Dispatch by Subdomain

	Dispatch by Path

	Using URL Processors
	Internationalized Application URLs

	Internationalized Blueprint URLs

	Deploying with Setuptools
	Basic Setup Script

	Tagging Builds

	Distributing Resources

	Declaring Dependencies

	Installing / Developing

	Deploying with Fabric
	Creating the first Fabfile

	Running Fabfiles

	The WSGI File

	The Configuration File

	First Deployment

	Next Steps

	Using SQLite 3 with Flask
	Connect on Demand

	Easy Querying

	Initial Schemas

	SQLAlchemy in Flask
	Flask-SQLAlchemy Extension

	Declarative

	Manual Object Relational Mapping

	SQL Abstraction Layer

	Uploading Files
	A Gentle Introduction

	Improving Uploads

	Upload Progress Bars

	An Easier Solution

	Caching

	View Decorators
	Login Required Decorator

	Caching Decorator

	Templating Decorator

	Endpoint Decorator

	Form Validation with WTForms
	The Forms

	In the View

	Forms in Templates

	Template Inheritance
	Base Template

	Child Template

	Message Flashing
	Simple Flashing

	Flashing With Categories

	Filtering Flash Messages

	AJAX with jQuery
	Loading jQuery

	Where is My Site?

	JSON View Functions

	The HTML

	Lazily Loading Views
	Converting to Centralized URL Map

	Loading Late

	MongoDB with MongoEngine
	Configuration

	Mapping Documents

	Creating Data

	Queries

	Documentation

	Adding a favicon
	See also

	Streaming Contents
	Basic Usage

	Streaming from Templates

	Streaming with Context

	Deferred Request Callbacks

	Adding HTTP Method Overrides

	Request Content Checksums

	Celery Background Tasks
	Install

	Configure

	An example task

	Run a worker

	Subclassing Flask

	Single-Page Applications

Large Applications as Packages

Imagine a simple flask application structure that looks like this:

/yourapplication
 yourapplication.py
 /static
 style.css
 /templates
 layout.html
 index.html
 login.html
 ...

While this is fine for small applications, for larger applications
it’s a good idea to use a package instead of a module.
The Tutorial is structured to use the package pattern,
see the :gh:`example code <examples/tutorial>`.

Simple Packages

To convert that into a larger one, just create a new folder
yourapplication inside the existing one and move everything below it.
Then rename yourapplication.py to __init__.py. (Make sure to delete
all .pyc files first, otherwise things would most likely break)

You should then end up with something like that:

/yourapplication
 /yourapplication
 __init__.py
 /static
 style.css
 /templates
 layout.html
 index.html
 login.html
 ...

But how do you run your application now? The naive python
yourapplication/__init__.py will not work. Let’s just say that Python
does not want modules in packages to be the startup file. But that is not
a big problem, just add a new file called setup.py next to the inner
yourapplication folder with the following contents:

from setuptools import setup

setup(
 name='yourapplication',
 packages=['yourapplication'],
 include_package_data=True,
 install_requires=[
 'flask',
],
)

In order to run the application you need to export an environment variable
that tells Flask where to find the application instance:

If you are outside of the project directory make sure to provide the exact
path to your application directory. Similarly you can turn on the
development features like this:

In order to install and run the application you need to issue the following
commands:

$ pip install -e .
$ flask run

What did we gain from this? Now we can restructure the application a bit
into multiple modules. The only thing you have to remember is the
following quick checklist:

	the Flask application object creation has to be in the
__init__.py file. That way each module can import it safely and the
__name__ variable will resolve to the correct package.

	all the view functions (the ones with a route()
decorator on top) have to be imported in the __init__.py file.
Not the object itself, but the module it is in. Import the view module
after the application object is created.

Here’s an example __init__.py:

from flask import Flask
app = Flask(__name__)

import yourapplication.views

And this is what views.py would look like:

from yourapplication import app

@app.route('/')
def index():
 return 'Hello World!'

You should then end up with something like that:

/yourapplication
 setup.py
 /yourapplication
 __init__.py
 views.py
 /static
 style.css
 /templates
 layout.html
 index.html
 login.html
 ...

Circular Imports

Every Python programmer hates them, and yet we just added some:
circular imports (That’s when two modules depend on each other. In this
case views.py depends on __init__.py). Be advised that this is a
bad idea in general but here it is actually fine. The reason for this is
that we are not actually using the views in __init__.py and just
ensuring the module is imported and we are doing that at the bottom of
the file.

There are still some problems with that approach but if you want to use
decorators there is no way around that. Check out the
Becoming Big section for some inspiration how to deal with that.

Working with Blueprints

If you have larger applications it’s recommended to divide them into
smaller groups where each group is implemented with the help of a
blueprint. For a gentle introduction into this topic refer to the
Modular Applications with Blueprints chapter of the documentation.

Application Factories

If you are already using packages and blueprints for your application
(Modular Applications with Blueprints) there are a couple of really nice ways to further improve
the experience. A common pattern is creating the application object when
the blueprint is imported. But if you move the creation of this object
into a function, you can then create multiple instances of this app later.

So why would you want to do this?

	Testing. You can have instances of the application with different
settings to test every case.

	Multiple instances. Imagine you want to run different versions of the
same application. Of course you could have multiple instances with
different configs set up in your webserver, but if you use factories,
you can have multiple instances of the same application running in the
same application process which can be handy.

So how would you then actually implement that?

Basic Factories

The idea is to set up the application in a function. Like this:

def create_app(config_filename):
 app = Flask(__name__)
 app.config.from_pyfile(config_filename)

 from yourapplication.model import db
 db.init_app(app)

 from yourapplication.views.admin import admin
 from yourapplication.views.frontend import frontend
 app.register_blueprint(admin)
 app.register_blueprint(frontend)

 return app

The downside is that you cannot use the application object in the blueprints
at import time. You can however use it from within a request. How do you
get access to the application with the config? Use
current_app:

from flask import current_app, Blueprint, render_template
admin = Blueprint('admin', __name__, url_prefix='/admin')

@admin.route('/')
def index():
 return render_template(current_app.config['INDEX_TEMPLATE'])

Here we look up the name of a template in the config.

Factories & Extensions

It’s preferable to create your extensions and app factories so that the
extension object does not initially get bound to the application.

Using Flask-SQLAlchemy [https://flask-sqlalchemy.palletsprojects.com/],
as an example, you should not do something along those lines:

def create_app(config_filename):
 app = Flask(__name__)
 app.config.from_pyfile(config_filename)

 db = SQLAlchemy(app)

But, rather, in model.py (or equivalent):

db = SQLAlchemy()

and in your application.py (or equivalent):

def create_app(config_filename):
 app = Flask(__name__)
 app.config.from_pyfile(config_filename)

 from yourapplication.model import db
 db.init_app(app)

Using this design pattern, no application-specific state is stored on the
extension object, so one extension object can be used for multiple apps.
For more information about the design of extensions refer to Flask Extension Development.

Using Applications

To run such an application, you can use the flask command:

Flask will automatically detect the factory (create_app or make_app)
in myapp. You can also pass arguments to the factory like this:

Then the create_app factory in myapp is called with the string
'dev' as the argument. See Command Line Interface for more detail.

Factory Improvements

The factory function above is not very clever, but you can improve it.
The following changes are straightforward to implement:

	Make it possible to pass in configuration values for unit tests so that
you don’t have to create config files on the filesystem.

	Call a function from a blueprint when the application is setting up so
that you have a place to modify attributes of the application (like
hooking in before/after request handlers etc.)

	Add in WSGI middlewares when the application is being created if necessary.

Application Dispatching

Application dispatching is the process of combining multiple Flask
applications on the WSGI level. You can combine not only Flask
applications but any WSGI application. This would allow you to run a
Django and a Flask application in the same interpreter side by side if
you want. The usefulness of this depends on how the applications work
internally.

The fundamental difference from Large Applications as Packages is that in this case you
are running the same or different Flask applications that are entirely
isolated from each other. They run different configurations and are
dispatched on the WSGI level.

Working with this Document

Each of the techniques and examples below results in an application
object that can be run with any WSGI server. For production, see
Deployment Options. For development, Werkzeug provides a server
through werkzeug.serving.run_simple():

from werkzeug.serving import run_simple
run_simple('localhost', 5000, application, use_reloader=True)

Note that run_simple is not intended for
use in production. Use a production WSGI server. See Deployment Options.

In order to use the interactive debugger, debugging must be enabled both on
the application and the simple server. Here is the “hello world” example with
debugging and run_simple:

from flask import Flask
from werkzeug.serving import run_simple

app = Flask(__name__)
app.debug = True

@app.route('/')
def hello_world():
 return 'Hello World!'

if __name__ == '__main__':
 run_simple('localhost', 5000, app,
 use_reloader=True, use_debugger=True, use_evalex=True)

Combining Applications

If you have entirely separated applications and you want them to work next
to each other in the same Python interpreter process you can take
advantage of the werkzeug.wsgi.DispatcherMiddleware. The idea
here is that each Flask application is a valid WSGI application and they
are combined by the dispatcher middleware into a larger one that is
dispatched based on prefix.

For example you could have your main application run on / and your
backend interface on /backend:

from werkzeug.middleware.dispatcher import DispatcherMiddleware
from frontend_app import application as frontend
from backend_app import application as backend

application = DispatcherMiddleware(frontend, {
 '/backend': backend
})

Dispatch by Subdomain

Sometimes you might want to use multiple instances of the same application
with different configurations. Assuming the application is created inside
a function and you can call that function to instantiate it, that is
really easy to implement. In order to develop your application to support
creating new instances in functions have a look at the
Application Factories pattern.

A very common example would be creating applications per subdomain. For
instance you configure your webserver to dispatch all requests for all
subdomains to your application and you then use the subdomain information
to create user-specific instances. Once you have your server set up to
listen on all subdomains you can use a very simple WSGI application to do
the dynamic application creation.

The perfect level for abstraction in that regard is the WSGI layer. You
write your own WSGI application that looks at the request that comes and
delegates it to your Flask application. If that application does not
exist yet, it is dynamically created and remembered:

from threading import Lock

class SubdomainDispatcher(object):

 def __init__(self, domain, create_app):
 self.domain = domain
 self.create_app = create_app
 self.lock = Lock()
 self.instances = {}

 def get_application(self, host):
 host = host.split(':')[0]
 assert host.endswith(self.domain), 'Configuration error'
 subdomain = host[:-len(self.domain)].rstrip('.')
 with self.lock:
 app = self.instances.get(subdomain)
 if app is None:
 app = self.create_app(subdomain)
 self.instances[subdomain] = app
 return app

 def __call__(self, environ, start_response):
 app = self.get_application(environ['HTTP_HOST'])
 return app(environ, start_response)

This dispatcher can then be used like this:

from myapplication import create_app, get_user_for_subdomain
from werkzeug.exceptions import NotFound

def make_app(subdomain):
 user = get_user_for_subdomain(subdomain)
 if user is None:
 # if there is no user for that subdomain we still have
 # to return a WSGI application that handles that request.
 # We can then just return the NotFound() exception as
 # application which will render a default 404 page.
 # You might also redirect the user to the main page then
 return NotFound()

 # otherwise create the application for the specific user
 return create_app(user)

application = SubdomainDispatcher('example.com', make_app)

Dispatch by Path

Dispatching by a path on the URL is very similar. Instead of looking at
the Host header to figure out the subdomain one simply looks at the
request path up to the first slash:

from threading import Lock
from werkzeug.wsgi import pop_path_info, peek_path_info

class PathDispatcher(object):

 def __init__(self, default_app, create_app):
 self.default_app = default_app
 self.create_app = create_app
 self.lock = Lock()
 self.instances = {}

 def get_application(self, prefix):
 with self.lock:
 app = self.instances.get(prefix)
 if app is None:
 app = self.create_app(prefix)
 if app is not None:
 self.instances[prefix] = app
 return app

 def __call__(self, environ, start_response):
 app = self.get_application(peek_path_info(environ))
 if app is not None:
 pop_path_info(environ)
 else:
 app = self.default_app
 return app(environ, start_response)

The big difference between this and the subdomain one is that this one
falls back to another application if the creator function returns None:

from myapplication import create_app, default_app, get_user_for_prefix

def make_app(prefix):
 user = get_user_for_prefix(prefix)
 if user is not None:
 return create_app(user)

application = PathDispatcher(default_app, make_app)

Using URL Processors

New in version 0.7.

Flask 0.7 introduces the concept of URL processors. The idea is that you
might have a bunch of resources with common parts in the URL that you
don’t always explicitly want to provide. For instance you might have a
bunch of URLs that have the language code in it but you don’t want to have
to handle it in every single function yourself.

URL processors are especially helpful when combined with blueprints. We
will handle both application specific URL processors here as well as
blueprint specifics.

Internationalized Application URLs

Consider an application like this:

from flask import Flask, g

app = Flask(__name__)

@app.route('/<lang_code>/')
def index(lang_code):
 g.lang_code = lang_code
 ...

@app.route('/<lang_code>/about')
def about(lang_code):
 g.lang_code = lang_code
 ...

This is an awful lot of repetition as you have to handle the language code
setting on the g object yourself in every single function.
Sure, a decorator could be used to simplify this, but if you want to
generate URLs from one function to another you would have to still provide
the language code explicitly which can be annoying.

For the latter, this is where url_defaults() functions
come in. They can automatically inject values into a call to
url_for(). The code below checks if the
language code is not yet in the dictionary of URL values and if the
endpoint wants a value named 'lang_code':

@app.url_defaults
def add_language_code(endpoint, values):
 if 'lang_code' in values or not g.lang_code:
 return
 if app.url_map.is_endpoint_expecting(endpoint, 'lang_code'):
 values['lang_code'] = g.lang_code

The method is_endpoint_expecting() of the URL
map can be used to figure out if it would make sense to provide a language
code for the given endpoint.

The reverse of that function are
url_value_preprocessor()s. They are executed right
after the request was matched and can execute code based on the URL
values. The idea is that they pull information out of the values
dictionary and put it somewhere else:

@app.url_value_preprocessor
def pull_lang_code(endpoint, values):
 g.lang_code = values.pop('lang_code', None)

That way you no longer have to do the lang_code assignment to
g in every function. You can further improve that by
writing your own decorator that prefixes URLs with the language code, but
the more beautiful solution is using a blueprint. Once the
'lang_code' is popped from the values dictionary and it will no longer
be forwarded to the view function reducing the code to this:

from flask import Flask, g

app = Flask(__name__)

@app.url_defaults
def add_language_code(endpoint, values):
 if 'lang_code' in values or not g.lang_code:
 return
 if app.url_map.is_endpoint_expecting(endpoint, 'lang_code'):
 values['lang_code'] = g.lang_code

@app.url_value_preprocessor
def pull_lang_code(endpoint, values):
 g.lang_code = values.pop('lang_code', None)

@app.route('/<lang_code>/')
def index():
 ...

@app.route('/<lang_code>/about')
def about():
 ...

Internationalized Blueprint URLs

Because blueprints can automatically prefix all URLs with a common string
it’s easy to automatically do that for every function. Furthermore
blueprints can have per-blueprint URL processors which removes a whole lot
of logic from the url_defaults() function because it no
longer has to check if the URL is really interested in a 'lang_code'
parameter:

from flask import Blueprint, g

bp = Blueprint('frontend', __name__, url_prefix='/<lang_code>')

@bp.url_defaults
def add_language_code(endpoint, values):
 values.setdefault('lang_code', g.lang_code)

@bp.url_value_preprocessor
def pull_lang_code(endpoint, values):
 g.lang_code = values.pop('lang_code')

@bp.route('/')
def index():
 ...

@bp.route('/about')
def about():
 ...

Deploying with Setuptools

Setuptools [https://pypi.org/project/setuptools/], is an extension library that is commonly used to
distribute Python libraries and extensions. It extends distutils, a basic
module installation system shipped with Python to also support various more
complex constructs that make larger applications easier to distribute:

	support for dependencies: a library or application can declare a
list of other libraries it depends on which will be installed
automatically for you.

	package registry: setuptools registers your package with your
Python installation. This makes it possible to query information
provided by one package from another package. The best known feature of
this system is the entry point support which allows one package to
declare an “entry point” that another package can hook into to extend the
other package.

	installation manager: pip can install other libraries for you.

Flask itself, and all the libraries you can find on PyPI are distributed with
either setuptools or distutils.

In this case we assume your application is called
yourapplication.py and you are not using a module, but a
package. If you have not yet converted your application into a package,
head over to Large Applications as Packages to see how this can be done.

A working deployment with setuptools is the first step into more complex
and more automated deployment scenarios. If you want to fully automate
the process, also read the Deploying with Fabric chapter.

Basic Setup Script

Because you have Flask installed, you have setuptools available on your system.
Flask already depends upon setuptools.

Standard disclaimer applies: use a virtualenv.

Your setup code always goes into a file named setup.py next to your
application. The name of the file is only convention, but because
everybody will look for a file with that name, you better not change it.

A basic setup.py file for a Flask application looks like this:

from setuptools import setup

setup(
 name='Your Application',
 version='1.0',
 long_description=__doc__,
 packages=['yourapplication'],
 include_package_data=True,
 zip_safe=False,
 install_requires=['Flask']
)

Please keep in mind that you have to list subpackages explicitly. If you
want setuptools to lookup the packages for you automatically, you can use
the find_packages function:

from setuptools import setup, find_packages

setup(
 ...
 packages=find_packages()
)

Most parameters to the setup function should be self explanatory,
include_package_data and zip_safe might not be.
include_package_data tells setuptools to look for a MANIFEST.in file
and install all the entries that match as package data. We will use this
to distribute the static files and templates along with the Python module
(see Distributing Resources). The zip_safe flag can be used to
force or prevent zip Archive creation. In general you probably don’t want
your packages to be installed as zip files because some tools do not
support them and they make debugging a lot harder.

Tagging Builds

It is useful to distinguish between release and development builds. Add a
setup.cfg file to configure these options.

[egg_info]
tag_build = .dev
tag_date = 1

[aliases]
release = egg_info -Db ''

Running python setup.py sdist will create a development package
with “.dev” and the current date appended: flaskr-1.0.dev20160314.tar.gz.
Running python setup.py release sdist will create a release package
with only the version: flaskr-1.0.tar.gz.

Distributing Resources

If you try to install the package you just created, you will notice that
folders like static or templates are not installed for you. The
reason for this is that setuptools does not know which files to add for
you. What you should do, is to create a MANIFEST.in file next to your
setup.py file. This file lists all the files that should be added to
your tarball:

recursive-include yourapplication/templates *
recursive-include yourapplication/static *

Don’t forget that even if you enlist them in your MANIFEST.in file, they
won’t be installed for you unless you set the include_package_data
parameter of the setup function to True!

Declaring Dependencies

Dependencies are declared in the install_requires parameter as a list.
Each item in that list is the name of a package that should be pulled from
PyPI on installation. By default it will always use the most recent
version, but you can also provide minimum and maximum version
requirements. Here some examples:

install_requires=[
 'Flask>=0.2',
 'SQLAlchemy>=0.6',
 'BrokenPackage>=0.7,<=1.0'
]

As mentioned earlier, dependencies are pulled from PyPI. What if you
want to depend on a package that cannot be found on PyPI and won’t be
because it is an internal package you don’t want to share with anyone?
Just do it as if there was a PyPI entry and provide a list of
alternative locations where setuptools should look for tarballs:

dependency_links=['http://example.com/yourfiles']

Make sure that page has a directory listing and the links on the page are
pointing to the actual tarballs with their correct filenames as this is
how setuptools will find the files. If you have an internal company
server that contains the packages, provide the URL to that server.

Installing / Developing

To install your application (ideally into a virtualenv) just run the
setup.py script with the install parameter. It will install your
application into the virtualenv’s site-packages folder and also download
and install all dependencies:

$ python setup.py install

If you are developing on the package and also want the requirements to be
installed, you can use the develop command instead:

$ python setup.py develop

This has the advantage of just installing a link to the site-packages
folder instead of copying the data over. You can then continue to work on
the code without having to run install again after each change.

Deploying with Fabric

Fabric [https://www.fabfile.org/] is a tool for Python similar to Makefiles but with the ability
to execute commands on a remote server. In combination with a properly
set up Python package (Large Applications as Packages) and a good concept for
configurations (Configuration Handling) it is very easy to deploy Flask
applications to external servers.

Before we get started, here a quick checklist of things we have to ensure
upfront:

	Fabric 1.0 has to be installed locally. This tutorial assumes the
latest version of Fabric.

	The application already has to be a package and requires a working
setup.py file (Deploying with Setuptools).

	In the following example we are using mod_wsgi for the remote
servers. You can of course use your own favourite server there, but
for this example we chose Apache + mod_wsgi because it’s very easy
to setup and has a simple way to reload applications without root
access.

Creating the first Fabfile

A fabfile is what controls what Fabric executes. It is named fabfile.py
and executed by the fab command. All the functions defined in that file
will show up as fab subcommands. They are executed on one or more
hosts. These hosts can be defined either in the fabfile or on the command
line. In this case we will add them to the fabfile.

This is a basic first example that has the ability to upload the current
source code to the server and install it into a pre-existing
virtual environment:

from fabric.api import *

the user to use for the remote commands
env.user = 'appuser'
the servers where the commands are executed
env.hosts = ['server1.example.com', 'server2.example.com']

def pack():
 # build the package
 local('python setup.py sdist --formats=gztar', capture=False)

def deploy():
 # figure out the package name and version
 dist = local('python setup.py --fullname', capture=True).strip()
 filename = f'{dist}.tar.gz'

 # upload the package to the temporary folder on the server
 put(f'dist/{filename}', f'/tmp/{filename}')

 # install the package in the application's virtualenv with pip
 run(f'/var/www/yourapplication/env/bin/pip install /tmp/{filename}')

 # remove the uploaded package
 run(f'rm -r /tmp/{filename}')

 # touch the .wsgi file to trigger a reload in mod_wsgi
 run('touch /var/www/yourapplication.wsgi')

Running Fabfiles

Now how do you execute that fabfile? You use the fab command. To
deploy the current version of the code on the remote server you would use
this command:

$ fab pack deploy

However this requires that our server already has the
/var/www/yourapplication folder created and
/var/www/yourapplication/env to be a virtual environment. Furthermore
are we not creating the configuration or .wsgi file on the server. So
how do we bootstrap a new server into our infrastructure?

This now depends on the number of servers we want to set up. If we just
have one application server (which the majority of applications will
have), creating a command in the fabfile for this is overkill. But
obviously you can do that. In that case you would probably call it
setup or bootstrap and then pass the servername explicitly on the
command line:

$ fab -H newserver.example.com bootstrap

To setup a new server you would roughly do these steps:

	Create the directory structure in /var/www:

$ mkdir /var/www/yourapplication
$ cd /var/www/yourapplication
$ virtualenv --distribute env

	Upload a new application.wsgi file to the server and the
configuration file for the application (eg: application.cfg)

	Create a new Apache config for yourapplication and activate it.
Make sure to activate watching for changes of the .wsgi file so
that we can automatically reload the application by touching it.
See mod_wsgi (Apache).

So now the question is, where do the application.wsgi and
application.cfg files come from?

The WSGI File

The WSGI file has to import the application and also to set an environment
variable so that the application knows where to look for the config. This
is a short example that does exactly that:

import os
os.environ['YOURAPPLICATION_CONFIG'] = '/var/www/yourapplication/application.cfg'
from yourapplication import app

The application itself then has to initialize itself like this to look for
the config at that environment variable:

app = Flask(__name__)
app.config.from_object('yourapplication.default_config')
app.config.from_envvar('YOURAPPLICATION_CONFIG')

This approach is explained in detail in the Configuration Handling section of the
documentation.

The Configuration File

Now as mentioned above, the application will find the correct
configuration file by looking up the YOURAPPLICATION_CONFIG environment
variable. So we have to put the configuration in a place where the
application will able to find it. Configuration files have the unfriendly
quality of being different on all computers, so you do not version them
usually.

A popular approach is to store configuration files for different servers
in a separate version control repository and check them out on all
servers. Then symlink the file that is active for the server into the
location where it’s expected (eg: /var/www/yourapplication).

Either way, in our case here we only expect one or two servers and we can
upload them ahead of time by hand.

First Deployment

Now we can do our first deployment. We have set up the servers so that
they have their virtual environments and activated apache configs. Now we
can pack up the application and deploy it:

$ fab pack deploy

Fabric will now connect to all servers and run the commands as written
down in the fabfile. First it will execute pack so that we have our
tarball ready and then it will execute deploy and upload the source code
to all servers and install it there. Thanks to the setup.py file we
will automatically pull in the required libraries into our virtual
environment.

Next Steps

From that point onwards there is so much that can be done to make
deployment actually fun:

	Create a bootstrap command that initializes new servers. It could
initialize a new virtual environment, setup apache appropriately etc.

	Put configuration files into a separate version control repository
and symlink the active configs into place.

	You could also put your application code into a repository and check
out the latest version on the server and then install. That way you
can also easily go back to older versions.

	hook in testing functionality so that you can deploy to an external
server and run the test suite.

Working with Fabric is fun and you will notice that it’s quite magical to
type fab deploy and see your application being deployed automatically
to one or more remote servers.

Using SQLite 3 with Flask

In Flask you can easily implement the opening of database connections on
demand and closing them when the context dies (usually at the end of the
request).

Here is a simple example of how you can use SQLite 3 with Flask:

import sqlite3
from flask import g

DATABASE = '/path/to/database.db'

def get_db():
 db = getattr(g, '_database', None)
 if db is None:
 db = g._database = sqlite3.connect(DATABASE)
 return db

@app.teardown_appcontext
def close_connection(exception):
 db = getattr(g, '_database', None)
 if db is not None:
 db.close()

Now, to use the database, the application must either have an active
application context (which is always true if there is a request in flight)
or create an application context itself. At that point the get_db
function can be used to get the current database connection. Whenever the
context is destroyed the database connection will be terminated.

Note: if you use Flask 0.9 or older you need to use
flask._app_ctx_stack.top instead of g as the flask.g
object was bound to the request and not application context.

Example:

@app.route('/')
def index():
 cur = get_db().cursor()
 ...

Note

Please keep in mind that the teardown request and appcontext functions
are always executed, even if a before-request handler failed or was
never executed. Because of this we have to make sure here that the
database is there before we close it.

Connect on Demand

The upside of this approach (connecting on first use) is that this will
only open the connection if truly necessary. If you want to use this
code outside a request context you can use it in a Python shell by opening
the application context by hand:

with app.app_context():
 # now you can use get_db()

Easy Querying

Now in each request handling function you can access get_db() to get the
current open database connection. To simplify working with SQLite, a
row factory function is useful. It is executed for every result returned
from the database to convert the result. For instance, in order to get
dictionaries instead of tuples, this could be inserted into the get_db
function we created above:

def make_dicts(cursor, row):
 return dict((cursor.description[idx][0], value)
 for idx, value in enumerate(row))

db.row_factory = make_dicts

This will make the sqlite3 module return dicts for this database connection, which are much nicer to deal with. Even more simply, we could place this in get_db instead:

db.row_factory = sqlite3.Row

This would use Row objects rather than dicts to return the results of queries. These are namedtuple s, so we can access them either by index or by key. For example, assuming we have a sqlite3.Row called r for the rows id, FirstName, LastName, and MiddleInitial:

>>> # You can get values based on the row's name
>>> r['FirstName']
John
>>> # Or, you can get them based on index
>>> r[1]
John
Row objects are also iterable:
>>> for value in r:
... print(value)
1
John
Doe
M

Additionally, it is a good idea to provide a query function that combines
getting the cursor, executing and fetching the results:

def query_db(query, args=(), one=False):
 cur = get_db().execute(query, args)
 rv = cur.fetchall()
 cur.close()
 return (rv[0] if rv else None) if one else rv

This handy little function, in combination with a row factory, makes
working with the database much more pleasant than it is by just using the
raw cursor and connection objects.

Here is how you can use it:

for user in query_db('select * from users'):
 print(user['username'], 'has the id', user['user_id'])

Or if you just want a single result:

user = query_db('select * from users where username = ?',
 [the_username], one=True)
if user is None:
 print('No such user')
else:
 print(the_username, 'has the id', user['user_id'])

To pass variable parts to the SQL statement, use a question mark in the
statement and pass in the arguments as a list. Never directly add them to
the SQL statement with string formatting because this makes it possible
to attack the application using SQL Injections [https://en.wikipedia.org/wiki/SQL_injection].

Initial Schemas

Relational databases need schemas, so applications often ship a
schema.sql file that creates the database. It’s a good idea to provide
a function that creates the database based on that schema. This function
can do that for you:

def init_db():
 with app.app_context():
 db = get_db()
 with app.open_resource('schema.sql', mode='r') as f:
 db.cursor().executescript(f.read())
 db.commit()

You can then create such a database from the Python shell:

>>> from yourapplication import init_db
>>> init_db()

SQLAlchemy in Flask

Many people prefer SQLAlchemy [https://www.sqlalchemy.org/] for database access. In this case it’s
encouraged to use a package instead of a module for your flask application
and drop the models into a separate module (Large Applications as Packages). While that
is not necessary, it makes a lot of sense.

There are four very common ways to use SQLAlchemy. I will outline each
of them here:

Flask-SQLAlchemy Extension

Because SQLAlchemy is a common database abstraction layer and object
relational mapper that requires a little bit of configuration effort,
there is a Flask extension that handles that for you. This is recommended
if you want to get started quickly.

You can download Flask-SQLAlchemy [https://flask-sqlalchemy.palletsprojects.com/] from PyPI [https://pypi.org/project/Flask-SQLAlchemy/].

Declarative

The declarative extension in SQLAlchemy is the most recent method of using
SQLAlchemy. It allows you to define tables and models in one go, similar
to how Django works. In addition to the following text I recommend the
official documentation on the declarative [https://docs.sqlalchemy.org/en/latest/orm/extensions/declarative/] extension.

Here’s the example database.py module for your application:

from sqlalchemy import create_engine
from sqlalchemy.orm import scoped_session, sessionmaker
from sqlalchemy.ext.declarative import declarative_base

engine = create_engine('sqlite:////tmp/test.db')
db_session = scoped_session(sessionmaker(autocommit=False,
 autoflush=False,
 bind=engine))
Base = declarative_base()
Base.query = db_session.query_property()

def init_db():
 # import all modules here that might define models so that
 # they will be registered properly on the metadata. Otherwise
 # you will have to import them first before calling init_db()
 import yourapplication.models
 Base.metadata.create_all(bind=engine)

To define your models, just subclass the Base class that was created by
the code above. If you are wondering why we don’t have to care about
threads here (like we did in the SQLite3 example above with the
g object): that’s because SQLAlchemy does that for us
already with the scoped_session.

To use SQLAlchemy in a declarative way with your application, you just
have to put the following code into your application module. Flask will
automatically remove database sessions at the end of the request or
when the application shuts down:

from yourapplication.database import db_session

@app.teardown_appcontext
def shutdown_session(exception=None):
 db_session.remove()

Here is an example model (put this into models.py, e.g.):

from sqlalchemy import Column, Integer, String
from yourapplication.database import Base

class User(Base):
 __tablename__ = 'users'
 id = Column(Integer, primary_key=True)
 name = Column(String(50), unique=True)
 email = Column(String(120), unique=True)

 def __init__(self, name=None, email=None):
 self.name = name
 self.email = email

 def __repr__(self):
 return f'<User {self.name!r}>'

To create the database you can use the init_db function:

>>> from yourapplication.database import init_db
>>> init_db()

You can insert entries into the database like this:

>>> from yourapplication.database import db_session
>>> from yourapplication.models import User
>>> u = User('admin', 'admin@localhost')
>>> db_session.add(u)
>>> db_session.commit()

Querying is simple as well:

>>> User.query.all()
[<User 'admin'>]
>>> User.query.filter(User.name == 'admin').first()
<User 'admin'>

Manual Object Relational Mapping

Manual object relational mapping has a few upsides and a few downsides
versus the declarative approach from above. The main difference is that
you define tables and classes separately and map them together. It’s more
flexible but a little more to type. In general it works like the
declarative approach, so make sure to also split up your application into
multiple modules in a package.

Here is an example database.py module for your application:

from sqlalchemy import create_engine, MetaData
from sqlalchemy.orm import scoped_session, sessionmaker

engine = create_engine('sqlite:////tmp/test.db')
metadata = MetaData()
db_session = scoped_session(sessionmaker(autocommit=False,
 autoflush=False,
 bind=engine))
def init_db():
 metadata.create_all(bind=engine)

As in the declarative approach, you need to close the session after
each request or application context shutdown. Put this into your
application module:

from yourapplication.database import db_session

@app.teardown_appcontext
def shutdown_session(exception=None):
 db_session.remove()

Here is an example table and model (put this into models.py):

from sqlalchemy import Table, Column, Integer, String
from sqlalchemy.orm import mapper
from yourapplication.database import metadata, db_session

class User(object):
 query = db_session.query_property()

 def __init__(self, name=None, email=None):
 self.name = name
 self.email = email

 def __repr__(self):
 return f'<User {self.name!r}>'

users = Table('users', metadata,
 Column('id', Integer, primary_key=True),
 Column('name', String(50), unique=True),
 Column('email', String(120), unique=True)
)
mapper(User, users)

Querying and inserting works exactly the same as in the example above.

SQL Abstraction Layer

If you just want to use the database system (and SQL) abstraction layer
you basically only need the engine:

from sqlalchemy import create_engine, MetaData, Table

engine = create_engine('sqlite:////tmp/test.db')
metadata = MetaData(bind=engine)

Then you can either declare the tables in your code like in the examples
above, or automatically load them:

from sqlalchemy import Table

users = Table('users', metadata, autoload=True)

To insert data you can use the insert method. We have to get a
connection first so that we can use a transaction:

>>> con = engine.connect()
>>> con.execute(users.insert(), name='admin', email='admin@localhost')

SQLAlchemy will automatically commit for us.

To query your database, you use the engine directly or use a connection:

>>> users.select(users.c.id == 1).execute().first()
(1, 'admin', 'admin@localhost')

These results are also dict-like tuples:

>>> r = users.select(users.c.id == 1).execute().first()
>>> r['name']
'admin'

You can also pass strings of SQL statements to the
execute() method:

>>> engine.execute('select * from users where id = :1', [1]).first()
(1, 'admin', 'admin@localhost')

For more information about SQLAlchemy, head over to the
website [https://www.sqlalchemy.org/].

Uploading Files

Ah yes, the good old problem of file uploads. The basic idea of file
uploads is actually quite simple. It basically works like this:

	A <form> tag is marked with enctype=multipart/form-data
and an <input type=file> is placed in that form.

	The application accesses the file from the files
dictionary on the request object.

	use the save() method of the file to save
the file permanently somewhere on the filesystem.

A Gentle Introduction

Let’s start with a very basic application that uploads a file to a
specific upload folder and displays a file to the user. Let’s look at the
bootstrapping code for our application:

import os
from flask import Flask, flash, request, redirect, url_for
from werkzeug.utils import secure_filename

UPLOAD_FOLDER = '/path/to/the/uploads'
ALLOWED_EXTENSIONS = {'txt', 'pdf', 'png', 'jpg', 'jpeg', 'gif'}

app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER

So first we need a couple of imports. Most should be straightforward, the
werkzeug.secure_filename() is explained a little bit later. The
UPLOAD_FOLDER is where we will store the uploaded files and the
ALLOWED_EXTENSIONS is the set of allowed file extensions.

Why do we limit the extensions that are allowed? You probably don’t want
your users to be able to upload everything there if the server is directly
sending out the data to the client. That way you can make sure that users
are not able to upload HTML files that would cause XSS problems (see
Cross-Site Scripting (XSS)). Also make sure to disallow .php files if the server
executes them, but who has PHP installed on their server, right? :)

Next the functions that check if an extension is valid and that uploads
the file and redirects the user to the URL for the uploaded file:

def allowed_file(filename):
 return '.' in filename and \
 filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

@app.route('/', methods=['GET', 'POST'])
def upload_file():
 if request.method == 'POST':
 # check if the post request has the file part
 if 'file' not in request.files:
 flash('No file part')
 return redirect(request.url)
 file = request.files['file']
 # If the user does not select a file, the browser submits an
 # empty file without a filename.
 if file.filename == '':
 flash('No selected file')
 return redirect(request.url)
 if file and allowed_file(file.filename):
 filename = secure_filename(file.filename)
 file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename))
 return redirect(url_for('download_file', name=filename))
 return '''
 <!doctype html>
 <title>Upload new File</title>
 <h1>Upload new File</h1>
 <form method=post enctype=multipart/form-data>
 <input type=file name=file>
 <input type=submit value=Upload>
 </form>
 '''

So what does that secure_filename() function actually do?
Now the problem is that there is that principle called “never trust user
input”. This is also true for the filename of an uploaded file. All
submitted form data can be forged, and filenames can be dangerous. For
the moment just remember: always use that function to secure a filename
before storing it directly on the filesystem.

Information for the Pros

So you’re interested in what that secure_filename()
function does and what the problem is if you’re not using it? So just
imagine someone would send the following information as filename to
your application:

filename = "../../../../home/username/.bashrc"

Assuming the number of ../ is correct and you would join this with
the UPLOAD_FOLDER the user might have the ability to modify a file on
the server’s filesystem he or she should not modify. This does require some
knowledge about how the application looks like, but trust me, hackers
are patient :)

Now let’s look how that function works:

>>> secure_filename('../../../../home/username/.bashrc')
'home_username_.bashrc'

We want to be able to serve the uploaded files so they can be downloaded
by users. We’ll define a download_file view to serve files in the
upload folder by name. url_for("download_file", name=name) generates
download URLs.

from flask import send_from_directory

@app.route('/uploads/<name>')
def download_file(name):
 return send_from_directory(app.config["UPLOAD_FOLDER"], name)

If you’re using middleware or the HTTP server to serve files, you can
register the download_file endpoint as build_only so url_for
will work without a view function.

app.add_url_rule(
 "/uploads/<name>", endpoint="download_file", build_only=True
)

Improving Uploads

New in version 0.6.

So how exactly does Flask handle uploads? Well it will store them in the
webserver’s memory if the files are reasonably small, otherwise in a
temporary location (as returned by tempfile.gettempdir()). But how
do you specify the maximum file size after which an upload is aborted? By
default Flask will happily accept file uploads with an unlimited amount of
memory, but you can limit that by setting the MAX_CONTENT_LENGTH
config key:

from flask import Flask, Request

app = Flask(__name__)
app.config['MAX_CONTENT_LENGTH'] = 16 * 1000 * 1000

The code above will limit the maximum allowed payload to 16 megabytes.
If a larger file is transmitted, Flask will raise a
RequestEntityTooLarge exception.

Connection Reset Issue

When using the local development server, you may get a connection
reset error instead of a 413 response. You will get the correct
status response when running the app with a production WSGI server.

This feature was added in Flask 0.6 but can be achieved in older versions
as well by subclassing the request object. For more information on that
consult the Werkzeug documentation on file handling.

Upload Progress Bars

A while ago many developers had the idea to read the incoming file in
small chunks and store the upload progress in the database to be able to
poll the progress with JavaScript from the client. The client asks the
server every 5 seconds how much it has transmitted, but this is
something it should already know.

An Easier Solution

Now there are better solutions that work faster and are more reliable. There
are JavaScript libraries like jQuery [https://jquery.com/] that have form plugins to ease the
construction of progress bar.

Because the common pattern for file uploads exists almost unchanged in all
applications dealing with uploads, there are also some Flask extensions that
implement a full fledged upload mechanism that allows controlling which
file extensions are allowed to be uploaded.

Caching

When your application runs slow, throw some caches in. Well, at least
it’s the easiest way to speed up things. What does a cache do? Say you
have a function that takes some time to complete but the results would
still be good enough if they were 5 minutes old. So then the idea is that
you actually put the result of that calculation into a cache for some
time.

Flask itself does not provide caching for you, but Flask-Caching [https://flask-caching.readthedocs.io/en/latest/], an
extension for Flask does. Flask-Caching supports various backends, and it is
even possible to develop your own caching backend.

View Decorators

Python has a really interesting feature called function decorators. This
allows some really neat things for web applications. Because each view in
Flask is a function, decorators can be used to inject additional
functionality to one or more functions. The route()
decorator is the one you probably used already. But there are use cases
for implementing your own decorator. For instance, imagine you have a
view that should only be used by people that are logged in. If a user
goes to the site and is not logged in, they should be redirected to the
login page. This is a good example of a use case where a decorator is an
excellent solution.

Login Required Decorator

So let’s implement such a decorator. A decorator is a function that
wraps and replaces another function. Since the original function is
replaced, you need to remember to copy the original function’s information
to the new function. Use functools.wraps() to handle this for you.

This example assumes that the login page is called 'login' and that
the current user is stored in g.user and is None if there is no-one
logged in.

from functools import wraps
from flask import g, request, redirect, url_for

def login_required(f):
 @wraps(f)
 def decorated_function(*args, **kwargs):
 if g.user is None:
 return redirect(url_for('login', next=request.url))
 return f(*args, **kwargs)
 return decorated_function

To use the decorator, apply it as innermost decorator to a view function.
When applying further decorators, always remember
that the route() decorator is the outermost.

@app.route('/secret_page')
@login_required
def secret_page():
 pass

Note

The next value will exist in request.args after a GET request for
the login page. You’ll have to pass it along when sending the POST request
from the login form. You can do this with a hidden input tag, then retrieve it
from request.form when logging the user in.

<input type="hidden" value="{{ request.args.get('next', '') }}"/>

Caching Decorator

Imagine you have a view function that does an expensive calculation and
because of that you would like to cache the generated results for a
certain amount of time. A decorator would be nice for that. We’re
assuming you have set up a cache like mentioned in Caching.

Here is an example cache function. It generates the cache key from a
specific prefix (actually a format string) and the current path of the
request. Notice that we are using a function that first creates the
decorator that then decorates the function. Sounds awful? Unfortunately
it is a little bit more complex, but the code should still be
straightforward to read.

The decorated function will then work as follows

	get the unique cache key for the current request based on the current
path.

	get the value for that key from the cache. If the cache returned
something we will return that value.

	otherwise the original function is called and the return value is
stored in the cache for the timeout provided (by default 5 minutes).

Here the code:

from functools import wraps
from flask import request

def cached(timeout=5 * 60, key='view/{}'):
 def decorator(f):
 @wraps(f)
 def decorated_function(*args, **kwargs):
 cache_key = key.format(request.path)
 rv = cache.get(cache_key)
 if rv is not None:
 return rv
 rv = f(*args, **kwargs)
 cache.set(cache_key, rv, timeout=timeout)
 return rv
 return decorated_function
 return decorator

Notice that this assumes an instantiated cache object is available, see
Caching.

Templating Decorator

A common pattern invented by the TurboGears guys a while back is a
templating decorator. The idea of that decorator is that you return a
dictionary with the values passed to the template from the view function
and the template is automatically rendered. With that, the following
three examples do exactly the same:

@app.route('/')
def index():
 return render_template('index.html', value=42)

@app.route('/')
@templated('index.html')
def index():
 return dict(value=42)

@app.route('/')
@templated()
def index():
 return dict(value=42)

As you can see, if no template name is provided it will use the endpoint
of the URL map with dots converted to slashes + '.html'. Otherwise
the provided template name is used. When the decorated function returns,
the dictionary returned is passed to the template rendering function. If
None is returned, an empty dictionary is assumed, if something else than
a dictionary is returned we return it from the function unchanged. That
way you can still use the redirect function or return simple strings.

Here is the code for that decorator:

from functools import wraps
from flask import request, render_template

def templated(template=None):
 def decorator(f):
 @wraps(f)
 def decorated_function(*args, **kwargs):
 template_name = template
 if template_name is None:
 template_name = f"{request.endpoint.replace('.', '/')}.html"
 ctx = f(*args, **kwargs)
 if ctx is None:
 ctx = {}
 elif not isinstance(ctx, dict):
 return ctx
 return render_template(template_name, **ctx)
 return decorated_function
 return decorator

Endpoint Decorator

When you want to use the werkzeug routing system for more flexibility you
need to map the endpoint as defined in the Rule
to a view function. This is possible with this decorator. For example:

from flask import Flask
from werkzeug.routing import Rule

app = Flask(__name__)
app.url_map.add(Rule('/', endpoint='index'))

@app.endpoint('index')
def my_index():
 return "Hello world"

Form Validation with WTForms

When you have to work with form data submitted by a browser view, code
quickly becomes very hard to read. There are libraries out there designed
to make this process easier to manage. One of them is WTForms [https://wtforms.readthedocs.io/] which we
will handle here. If you find yourself in the situation of having many
forms, you might want to give it a try.

When you are working with WTForms you have to define your forms as classes
first. I recommend breaking up the application into multiple modules
(Large Applications as Packages) for that and adding a separate module for the
forms.

Getting the most out of WTForms with an Extension

The Flask-WTF [https://flask-wtf.readthedocs.io/] extension expands on this pattern and adds a
few little helpers that make working with forms and Flask more
fun. You can get it from PyPI [https://pypi.org/project/Flask-WTF/].

The Forms

This is an example form for a typical registration page:

from wtforms import Form, BooleanField, StringField, PasswordField, validators

class RegistrationForm(Form):
 username = StringField('Username', [validators.Length(min=4, max=25)])
 email = StringField('Email Address', [validators.Length(min=6, max=35)])
 password = PasswordField('New Password', [
 validators.DataRequired(),
 validators.EqualTo('confirm', message='Passwords must match')
])
 confirm = PasswordField('Repeat Password')
 accept_tos = BooleanField('I accept the TOS', [validators.DataRequired()])

In the View

In the view function, the usage of this form looks like this:

@app.route('/register', methods=['GET', 'POST'])
def register():
 form = RegistrationForm(request.form)
 if request.method == 'POST' and form.validate():
 user = User(form.username.data, form.email.data,
 form.password.data)
 db_session.add(user)
 flash('Thanks for registering')
 return redirect(url_for('login'))
 return render_template('register.html', form=form)

Notice we’re implying that the view is using SQLAlchemy here
(SQLAlchemy in Flask), but that’s not a requirement, of course. Adapt
the code as necessary.

Things to remember:

	create the form from the request form value if
the data is submitted via the HTTP POST method and
args if the data is submitted as GET.

	to validate the data, call the validate()
method, which will return True if the data validates, False
otherwise.

	to access individual values from the form, access form.<NAME>.data.

Forms in Templates

Now to the template side. When you pass the form to the templates, you can
easily render them there. Look at the following example template to see
how easy this is. WTForms does half the form generation for us already.
To make it even nicer, we can write a macro that renders a field with
label and a list of errors if there are any.

Here’s an example _formhelpers.html template with such a macro:

{% macro render_field(field) %}
 <dt>{{ field.label }}
 <dd>{{ field(**kwargs)|safe }}
 {% if field.errors %}
 <ul class=errors>
 {% for error in field.errors %}
 {{ error }}
 {% endfor %}

 {% endif %}
 </dd>
{% endmacro %}

This macro accepts a couple of keyword arguments that are forwarded to
WTForm’s field function, which renders the field for us. The keyword
arguments will be inserted as HTML attributes. So, for example, you can
call render_field(form.username, class='username') to add a class to
the input element. Note that WTForms returns standard Python strings,
so we have to tell Jinja2 that this data is already HTML-escaped with
the |safe filter.

Here is the register.html template for the function we used above, which
takes advantage of the _formhelpers.html template:

{% from "_formhelpers.html" import render_field %}
<form method=post>
 <dl>
 {{ render_field(form.username) }}
 {{ render_field(form.email) }}
 {{ render_field(form.password) }}
 {{ render_field(form.confirm) }}
 {{ render_field(form.accept_tos) }}
 </dl>
 <p><input type=submit value=Register>
</form>

For more information about WTForms, head over to the WTForms
website [https://wtforms.readthedocs.io/].

Template Inheritance

The most powerful part of Jinja is template inheritance. Template inheritance
allows you to build a base “skeleton” template that contains all the common
elements of your site and defines blocks that child templates can override.

Sounds complicated but is very basic. It’s easiest to understand it by starting
with an example.

Base Template

This template, which we’ll call layout.html, defines a simple HTML skeleton
document that you might use for a simple two-column page. It’s the job of
“child” templates to fill the empty blocks with content:

<!doctype html>
<html>
 <head>
 {% block head %}
 <link rel="stylesheet" href="{{ url_for('static', filename='style.css') }}">
 <title>{% block title %}{% endblock %} - My Webpage</title>
 {% endblock %}
 </head>
 <body>
 <div id="content">{% block content %}{% endblock %}</div>
 <div id="footer">
 {% block footer %}
 © Copyright 2010 by you.
 {% endblock %}
 </div>
 </body>
</html>

In this example, the {% block %} tags define four blocks that child templates
can fill in. All the block tag does is tell the template engine that a
child template may override those portions of the template.

Child Template

A child template might look like this:

{% extends "layout.html" %}
{% block title %}Index{% endblock %}
{% block head %}
 {{ super() }}
 <style type="text/css">
 .important { color: #336699; }
 </style>
{% endblock %}
{% block content %}
 <h1>Index</h1>
 <p class="important">
 Welcome on my awesome homepage.
{% endblock %}

The {% extends %} tag is the key here. It tells the template engine that
this template “extends” another template. When the template system evaluates
this template, first it locates the parent. The extends tag must be the
first tag in the template. To render the contents of a block defined in
the parent template, use {{ super() }}.

Message Flashing

Good applications and user interfaces are all about feedback. If the user
does not get enough feedback they will probably end up hating the
application. Flask provides a really simple way to give feedback to a
user with the flashing system. The flashing system basically makes it
possible to record a message at the end of a request and access it next
request and only next request. This is usually combined with a layout
template that does this. Note that browsers and sometimes web servers enforce
a limit on cookie sizes. This means that flashing messages that are too
large for session cookies causes message flashing to fail silently.

Simple Flashing

So here is a full example:

from flask import Flask, flash, redirect, render_template, \
 request, url_for

app = Flask(__name__)
app.secret_key = b'_5#y2L"F4Q8z\n\xec]/'

@app.route('/')
def index():
 return render_template('index.html')

@app.route('/login', methods=['GET', 'POST'])
def login():
 error = None
 if request.method == 'POST':
 if request.form['username'] != 'admin' or \
 request.form['password'] != 'secret':
 error = 'Invalid credentials'
 else:
 flash('You were successfully logged in')
 return redirect(url_for('index'))
 return render_template('login.html', error=error)

And here is the layout.html template which does the magic:

<!doctype html>
<title>My Application</title>
{% with messages = get_flashed_messages() %}
 {% if messages %}
 <ul class=flashes>
 {% for message in messages %}
 {{ message }}
 {% endfor %}

 {% endif %}
{% endwith %}
{% block body %}{% endblock %}

Here is the index.html template which inherits from layout.html:

{% extends "layout.html" %}
{% block body %}
 <h1>Overview</h1>
 <p>Do you want to log in?
{% endblock %}

And here is the login.html template which also inherits from
layout.html:

{% extends "layout.html" %}
{% block body %}
 <h1>Login</h1>
 {% if error %}
 <p class=error>Error: {{ error }}
 {% endif %}
 <form method=post>
 <dl>
 <dt>Username:
 <dd><input type=text name=username value="{{
 request.form.username }}">
 <dt>Password:
 <dd><input type=password name=password>
 </dl>
 <p><input type=submit value=Login>
 </form>
{% endblock %}

Flashing With Categories

New in version 0.3.

It is also possible to provide categories when flashing a message. The
default category if nothing is provided is 'message'. Alternative
categories can be used to give the user better feedback. For example
error messages could be displayed with a red background.

To flash a message with a different category, just use the second argument
to the flash() function:

flash('Invalid password provided', 'error')

Inside the template you then have to tell the
get_flashed_messages() function to also return the
categories. The loop looks slightly different in that situation then:

{% with messages = get_flashed_messages(with_categories=true) %}
 {% if messages %}
 <ul class=flashes>
 {% for category, message in messages %}
 <li class="{{ category }}">{{ message }}
 {% endfor %}

 {% endif %}
{% endwith %}

This is just one example of how to render these flashed messages. One
might also use the category to add a prefix such as
Error: to the message.

Filtering Flash Messages

New in version 0.9.

Optionally you can pass a list of categories which filters the results of
get_flashed_messages(). This is useful if you wish to
render each category in a separate block.

{% with errors = get_flashed_messages(category_filter=["error"]) %}
{% if errors %}
<div class="alert-message block-message error">
 ×

 {%- for msg in errors %}
 {{ msg }}
 {% endfor -%}

</div>
{% endif %}
{% endwith %}

AJAX with jQuery

jQuery [https://jquery.com/] is a small JavaScript library commonly used to simplify working
with the DOM and JavaScript in general. It is the perfect tool to make
web applications more dynamic by exchanging JSON between server and
client.

JSON itself is a very lightweight transport format, very similar to how
Python primitives (numbers, strings, dicts and lists) look like which is
widely supported and very easy to parse. It became popular a few years
ago and quickly replaced XML as transport format in web applications.

Loading jQuery

In order to use jQuery, you have to download it first and place it in the
static folder of your application and then ensure it’s loaded. Ideally
you have a layout template that is used for all pages where you just have
to add a script statement to the bottom of your <body> to load jQuery:

<script src="{{ url_for('static', filename='jquery.js') }}"></script>

Another method is using Google’s AJAX Libraries API [https://developers.google.com/speed/libraries/] to load jQuery:

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script>
<script>window.jQuery || document.write('<script src="{{
 url_for('static', filename='jquery.js') }}">\x3C/script>')</script>

In this case you have to put jQuery into your static folder as a fallback, but it will
first try to load it directly from Google. This has the advantage that your
website will probably load faster for users if they went to at least one
other website before using the same jQuery version from Google because it
will already be in the browser cache.

Where is My Site?

Do you know where your application is? If you are developing the answer
is quite simple: it’s on localhost port something and directly on the root
of that server. But what if you later decide to move your application to
a different location? For example to http://example.com/myapp? On
the server side this never was a problem because we were using the handy
url_for() function that could answer that question for
us, but if we are using jQuery we should not hardcode the path to
the application but make that dynamic, so how can we do that?

A simple method would be to add a script tag to our page that sets a
global variable to the prefix to the root of the application. Something
like this:

<script>
 $SCRIPT_ROOT = {{ request.script_root|tojson }};
</script>

JSON View Functions

Now let’s create a server side function that accepts two URL arguments of
numbers which should be added together and then sent back to the
application in a JSON object. This is a really ridiculous example and is
something you usually would do on the client side alone, but a simple
example that shows how you would use jQuery and Flask nonetheless:

from flask import Flask, jsonify, render_template, request
app = Flask(__name__)

@app.route('/_add_numbers')
def add_numbers():
 a = request.args.get('a', 0, type=int)
 b = request.args.get('b', 0, type=int)
 return jsonify(result=a + b)

@app.route('/')
def index():
 return render_template('index.html')

As you can see I also added an index method here that renders a
template. This template will load jQuery as above and have a little form where
we can add two numbers and a link to trigger the function on the server
side.

Note that we are using the get() method here
which will never fail. If the key is missing a default value (here 0)
is returned. Furthermore it can convert values to a specific type (like
in our case int). This is especially handy for code that is
triggered by a script (APIs, JavaScript etc.) because you don’t need
special error reporting in that case.

The HTML

Your index.html template either has to extend a layout.html template with
jQuery loaded and the $SCRIPT_ROOT variable set, or do that on the top.
Here’s the HTML code needed for our little application (index.html).
Notice that we also drop the script directly into the HTML here. It is
usually a better idea to have that in a separate script file:

<script>
 $(function() {
 $('a#calculate').bind('click', function() {
 $.getJSON($SCRIPT_ROOT + '/_add_numbers', {
 a: $('input[name="a"]').val(),
 b: $('input[name="b"]').val()
 }, function(data) {
 $("#result").text(data.result);
 });
 return false;
 });
 });
</script>
<h1>jQuery Example</h1>
<p><input type=text size=5 name=a> +
 <input type=text size=5 name=b> =
 ?
<p>calculate server side

I won’t go into detail here about how jQuery works, just a very quick
explanation of the little bit of code above:

	$(function() { ... }) specifies code that should run once the
browser is done loading the basic parts of the page.

	$('selector') selects an element and lets you operate on it.

	element.bind('event', func) specifies a function that should run
when the user clicked on the element. If that function returns
false, the default behavior will not kick in (in this case, navigate
to the # URL).

	$.getJSON(url, data, func) sends a GET request to url and will
send the contents of the data object as query parameters. Once the
data arrived, it will call the given function with the return value as
argument. Note that we can use the $SCRIPT_ROOT variable here that
we set earlier.

Check out the :gh:`example source <examples/javascript>` for a full
application demonstrating the code on this page, as well as the same
thing using XMLHttpRequest and fetch.

Lazily Loading Views

Flask is usually used with the decorators. Decorators are simple and you
have the URL right next to the function that is called for that specific
URL. However there is a downside to this approach: it means all your code
that uses decorators has to be imported upfront or Flask will never
actually find your function.

This can be a problem if your application has to import quick. It might
have to do that on systems like Google’s App Engine or other systems. So
if you suddenly notice that your application outgrows this approach you
can fall back to a centralized URL mapping.

The system that enables having a central URL map is the
add_url_rule() function. Instead of using decorators,
you have a file that sets up the application with all URLs.

Converting to Centralized URL Map

Imagine the current application looks somewhat like this:

from flask import Flask
app = Flask(__name__)

@app.route('/')
def index():
 pass

@app.route('/user/<username>')
def user(username):
 pass

Then, with the centralized approach you would have one file with the views
(views.py) but without any decorator:

def index():
 pass

def user(username):
 pass

And then a file that sets up an application which maps the functions to
URLs:

from flask import Flask
from yourapplication import views
app = Flask(__name__)
app.add_url_rule('/', view_func=views.index)
app.add_url_rule('/user/<username>', view_func=views.user)

Loading Late

So far we only split up the views and the routing, but the module is still
loaded upfront. The trick is to actually load the view function as needed.
This can be accomplished with a helper class that behaves just like a
function but internally imports the real function on first use:

from werkzeug.utils import import_string, cached_property

class LazyView(object):

 def __init__(self, import_name):
 self.__module__, self.__name__ = import_name.rsplit('.', 1)
 self.import_name = import_name

 @cached_property
 def view(self):
 return import_string(self.import_name)

 def __call__(self, *args, **kwargs):
 return self.view(*args, **kwargs)

What’s important here is is that __module__ and __name__ are properly
set. This is used by Flask internally to figure out how to name the
URL rules in case you don’t provide a name for the rule yourself.

Then you can define your central place to combine the views like this:

from flask import Flask
from yourapplication.helpers import LazyView
app = Flask(__name__)
app.add_url_rule('/',
 view_func=LazyView('yourapplication.views.index'))
app.add_url_rule('/user/<username>',
 view_func=LazyView('yourapplication.views.user'))

You can further optimize this in terms of amount of keystrokes needed to
write this by having a function that calls into
add_url_rule() by prefixing a string with the project
name and a dot, and by wrapping view_func in a LazyView as needed.

def url(import_name, url_rules=[], **options):
 view = LazyView(f"yourapplication.{import_name}")
 for url_rule in url_rules:
 app.add_url_rule(url_rule, view_func=view, **options)

add a single route to the index view
url('views.index', ['/'])

add two routes to a single function endpoint
url_rules = ['/user/','/user/<username>']
url('views.user', url_rules)

One thing to keep in mind is that before and after request handlers have
to be in a file that is imported upfront to work properly on the first
request. The same goes for any kind of remaining decorator.

MongoDB with MongoEngine

Using a document database like MongoDB is a common alternative to
relational SQL databases. This pattern shows how to use
MongoEngine [http://mongoengine.org], a document mapper library, to integrate with MongoDB.

A running MongoDB server and Flask-MongoEngine [https://flask-mongoengine.readthedocs.io] are required.

pip install flask-mongoengine

Configuration

Basic setup can be done by defining MONGODB_SETTINGS on
app.config and creating a MongoEngine instance.

from flask import Flask
from flask_mongoengine import MongoEngine

app = Flask(__name__)
app.config['MONGODB_SETTINGS'] = {
 "db": "myapp",
}
db = MongoEngine(app)

Mapping Documents

To declare a model that represents a Mongo document, create a class that
inherits from Document and declare each of the fields.

import mongoengine as me

class Movie(me.Document):
 title = me.StringField(required=True)
 year = me.IntField()
 rated = me.StringField()
 director = me.StringField()
 actors = me.ListField()

If the document has nested fields, use EmbeddedDocument to
defined the fields of the embedded document and
EmbeddedDocumentField to declare it on the parent document.

class Imdb(me.EmbeddedDocument):
 imdb_id = me.StringField()
 rating = me.DecimalField()
 votes = me.IntField()

class Movie(me.Document):
 ...
 imdb = me.EmbeddedDocumentField(Imdb)

Creating Data

Instantiate your document class with keyword arguments for the fields.
You can also assign values to the field attributes after instantiation.
Then call doc.save().

bttf = Movie(title="Back To The Future", year=1985)
bttf.actors = [
 "Michael J. Fox",
 "Christopher Lloyd"
]
bttf.imdb = Imdb(imdb_id="tt0088763", rating=8.5)
bttf.save()

Queries

Use the class objects attribute to make queries. A keyword argument
looks for an equal value on the field.

bttf = Movies.objects(title="Back To The Future").get_or_404()

Query operators may be used by concatenating them with the field name
using a double-underscore. objects, and queries returned by
calling it, are iterable.

some_theron_movie = Movie.objects(actors__in=["Charlize Theron"]).first()

for recents in Movie.objects(year__gte=2017):
 print(recents.title)

Documentation

There are many more ways to define and query documents with MongoEngine.
For more information, check out the official documentation [http://mongoengine.org].

Flask-MongoEngine adds helpful utilities on top of MongoEngine. Check
out their documentation [https://flask-mongoengine.readthedocs.io] as well.

Adding a favicon

A “favicon” is an icon used by browsers for tabs and bookmarks. This helps
to distinguish your website and to give it a unique brand.

A common question is how to add a favicon to a Flask application. First, of
course, you need an icon. It should be 16 × 16 pixels and in the ICO file
format. This is not a requirement but a de-facto standard supported by all
relevant browsers. Put the icon in your static directory as
favicon.ico.

Now, to get browsers to find your icon, the correct way is to add a link
tag in your HTML. So, for example:

<link rel="shortcut icon" href="{{ url_for('static', filename='favicon.ico') }}">

That’s all you need for most browsers, however some really old ones do not
support this standard. The old de-facto standard is to serve this file,
with this name, at the website root. If your application is not mounted at
the root path of the domain you either need to configure the web server to
serve the icon at the root or if you can’t do that you’re out of luck. If
however your application is the root you can simply route a redirect:

app.add_url_rule('/favicon.ico',
 redirect_to=url_for('static', filename='favicon.ico'))

If you want to save the extra redirect request you can also write a view
using send_from_directory():

import os
from flask import send_from_directory

@app.route('/favicon.ico')
def favicon():
 return send_from_directory(os.path.join(app.root_path, 'static'),
 'favicon.ico', mimetype='image/vnd.microsoft.icon')

We can leave out the explicit mimetype and it will be guessed, but we may
as well specify it to avoid the extra guessing, as it will always be the
same.

The above will serve the icon via your application and if possible it’s
better to configure your dedicated web server to serve it; refer to the
web server’s documentation.

See also

	The Favicon [https://en.wikipedia.org/wiki/Favicon] article on
Wikipedia

Streaming Contents

Sometimes you want to send an enormous amount of data to the client, much
more than you want to keep in memory. When you are generating the data on
the fly though, how do you send that back to the client without the
roundtrip to the filesystem?

The answer is by using generators and direct responses.

Basic Usage

This is a basic view function that generates a lot of CSV data on the fly.
The trick is to have an inner function that uses a generator to generate
data and to then invoke that function and pass it to a response object:

@app.route('/large.csv')
def generate_large_csv():
 def generate():
 for row in iter_all_rows():
 yield f"{','.join(row)}\n"
 return app.response_class(generate(), mimetype='text/csv')

Each yield expression is directly sent to the browser. Note though
that some WSGI middlewares might break streaming, so be careful there in
debug environments with profilers and other things you might have enabled.

Streaming from Templates

The Jinja2 template engine also supports rendering templates piece by
piece. This functionality is not directly exposed by Flask because it is
quite uncommon, but you can easily do it yourself:

def stream_template(template_name, **context):
 app.update_template_context(context)
 t = app.jinja_env.get_template(template_name)
 rv = t.stream(context)
 rv.enable_buffering(5)
 return rv

@app.route('/my-large-page.html')
def render_large_template():
 rows = iter_all_rows()
 return app.response_class(stream_template('the_template.html', rows=rows))

The trick here is to get the template object from the Jinja2 environment
on the application and to call stream() instead of
render() which returns a stream object instead of a
string. Since we’re bypassing the Flask template render functions and
using the template object itself we have to make sure to update the render
context ourselves by calling update_template_context().
The template is then evaluated as the stream is iterated over. Since each
time you do a yield the server will flush the content to the client you
might want to buffer up a few items in the template which you can do with
rv.enable_buffering(size). 5 is a sane default.

Streaming with Context

New in version 0.9.

Note that when you stream data, the request context is already gone the
moment the function executes. Flask 0.9 provides you with a helper that
can keep the request context around during the execution of the
generator:

from flask import stream_with_context, request

@app.route('/stream')
def streamed_response():
 def generate():
 yield 'Hello '
 yield request.args['name']
 yield '!'
 return app.response_class(stream_with_context(generate()))

Without the stream_with_context() function you would get a
RuntimeError at that point.

Deferred Request Callbacks

One of the design principles of Flask is that response objects are created and
passed down a chain of potential callbacks that can modify them or replace
them. When the request handling starts, there is no response object yet. It is
created as necessary either by a view function or by some other component in
the system.

What happens if you want to modify the response at a point where the response
does not exist yet? A common example for that would be a
before_request() callback that wants to set a cookie on the
response object.

One way is to avoid the situation. Very often that is possible. For instance
you can try to move that logic into a after_request()
callback instead. However, sometimes moving code there makes it
more complicated or awkward to reason about.

As an alternative, you can use after_this_request() to register
callbacks that will execute after only the current request. This way you can
defer code execution from anywhere in the application, based on the current
request.

At any time during a request, we can register a function to be called at the
end of the request. For example you can remember the current language of the
user in a cookie in a before_request() callback:

from flask import request, after_this_request

@app.before_request
def detect_user_language():
 language = request.cookies.get('user_lang')

 if language is None:
 language = guess_language_from_request()

 # when the response exists, set a cookie with the language
 @after_this_request
 def remember_language(response):
 response.set_cookie('user_lang', language)
 return response

 g.language = language

Adding HTTP Method Overrides

Some HTTP proxies do not support arbitrary HTTP methods or newer HTTP
methods (such as PATCH). In that case it’s possible to “proxy” HTTP
methods through another HTTP method in total violation of the protocol.

The way this works is by letting the client do an HTTP POST request and
set the X-HTTP-Method-Override header. Then the method is replaced
with the header value before being passed to Flask.

This can be accomplished with an HTTP middleware:

class HTTPMethodOverrideMiddleware(object):
 allowed_methods = frozenset([
 'GET',
 'HEAD',
 'POST',
 'DELETE',
 'PUT',
 'PATCH',
 'OPTIONS'
])
 bodyless_methods = frozenset(['GET', 'HEAD', 'OPTIONS', 'DELETE'])

 def __init__(self, app):
 self.app = app

 def __call__(self, environ, start_response):
 method = environ.get('HTTP_X_HTTP_METHOD_OVERRIDE', '').upper()
 if method in self.allowed_methods:
 environ['REQUEST_METHOD'] = method
 if method in self.bodyless_methods:
 environ['CONTENT_LENGTH'] = '0'
 return self.app(environ, start_response)

To use this with Flask, wrap the app object with the middleware:

from flask import Flask

app = Flask(__name__)
app.wsgi_app = HTTPMethodOverrideMiddleware(app.wsgi_app)

Request Content Checksums

Various pieces of code can consume the request data and preprocess it.
For instance JSON data ends up on the request object already read and
processed, form data ends up there as well but goes through a different
code path. This seems inconvenient when you want to calculate the
checksum of the incoming request data. This is necessary sometimes for
some APIs.

Fortunately this is however very simple to change by wrapping the input
stream.

The following example calculates the SHA1 checksum of the incoming data as
it gets read and stores it in the WSGI environment:

import hashlib

class ChecksumCalcStream(object):

 def __init__(self, stream):
 self._stream = stream
 self._hash = hashlib.sha1()

 def read(self, bytes):
 rv = self._stream.read(bytes)
 self._hash.update(rv)
 return rv

 def readline(self, size_hint):
 rv = self._stream.readline(size_hint)
 self._hash.update(rv)
 return rv

def generate_checksum(request):
 env = request.environ
 stream = ChecksumCalcStream(env['wsgi.input'])
 env['wsgi.input'] = stream
 return stream._hash

To use this, all you need to do is to hook the calculating stream in
before the request starts consuming data. (Eg: be careful accessing
request.form or anything of that nature. before_request_handlers
for instance should be careful not to access it).

Example usage:

@app.route('/special-api', methods=['POST'])
def special_api():
 hash = generate_checksum(request)
 # Accessing this parses the input stream
 files = request.files
 # At this point the hash is fully constructed.
 checksum = hash.hexdigest()
 return f"Hash was: {checksum}"

Celery Background Tasks

If your application has a long running task, such as processing some uploaded
data or sending email, you don’t want to wait for it to finish during a
request. Instead, use a task queue to send the necessary data to another
process that will run the task in the background while the request returns
immediately.

Celery is a powerful task queue that can be used for simple background tasks
as well as complex multi-stage programs and schedules. This guide will show you
how to configure Celery using Flask, but assumes you’ve already read the
First Steps with Celery [https://celery.readthedocs.io/en/latest/getting-started/first-steps-with-celery.html]
guide in the Celery documentation.

Install

Celery is a separate Python package. Install it from PyPI using pip:

$ pip install celery

Configure

The first thing you need is a Celery instance, this is called the celery
application. It serves the same purpose as the Flask
object in Flask, just for Celery. Since this instance is used as the
entry-point for everything you want to do in Celery, like creating tasks
and managing workers, it must be possible for other modules to import it.

For instance you can place this in a tasks module. While you can use
Celery without any reconfiguration with Flask, it becomes a bit nicer by
subclassing tasks and adding support for Flask’s application contexts and
hooking it up with the Flask configuration.

This is all that is necessary to properly integrate Celery with Flask:

from celery import Celery

def make_celery(app):
 celery = Celery(
 app.import_name,
 backend=app.config['CELERY_RESULT_BACKEND'],
 broker=app.config['CELERY_BROKER_URL']
)
 celery.conf.update(app.config)

 class ContextTask(celery.Task):
 def __call__(self, *args, **kwargs):
 with app.app_context():
 return self.run(*args, **kwargs)

 celery.Task = ContextTask
 return celery

The function creates a new Celery object, configures it with the broker
from the application config, updates the rest of the Celery config from
the Flask config and then creates a subclass of the task that wraps the
task execution in an application context.

An example task

Let’s write a task that adds two numbers together and returns the result. We
configure Celery’s broker and backend to use Redis, create a celery
application using the factory from above, and then use it to define the task.

from flask import Flask

flask_app = Flask(__name__)
flask_app.config.update(
 CELERY_BROKER_URL='redis://localhost:6379',
 CELERY_RESULT_BACKEND='redis://localhost:6379'
)
celery = make_celery(flask_app)

@celery.task()
def add_together(a, b):
 return a + b

This task can now be called in the background:

result = add_together.delay(23, 42)
result.wait() # 65

Run a worker

If you jumped in and already executed the above code you will be
disappointed to learn that .wait() will never actually return.
That’s because you also need to run a Celery worker to receive and execute the
task.

$ celery -A your_application.celery worker

The your_application string has to point to your application’s package
or module that creates the celery object.

Now that the worker is running, wait will return the result once the task
is finished.

Subclassing Flask

The Flask class is designed for subclassing.

For example, you may want to override how request parameters are handled to preserve their order:

from flask import Flask, Request
from werkzeug.datastructures import ImmutableOrderedMultiDict
class MyRequest(Request):
 """Request subclass to override request parameter storage"""
 parameter_storage_class = ImmutableOrderedMultiDict
class MyFlask(Flask):
 """Flask subclass using the custom request class"""
 request_class = MyRequest

This is the recommended approach for overriding or augmenting Flask’s internal functionality.

Single-Page Applications

Flask can be used to serve Single-Page Applications (SPA) by placing static
files produced by your frontend framework in a subfolder inside of your
project. You will also need to create a catch-all endpoint that routes all
requests to your SPA.

The following example demonstrates how to serve an SPA along with an API:

from flask import Flask, jsonify

app = Flask(__name__, static_folder='app', static_url_path="/app")

@app.route("/heartbeat")
def heartbeat():
 return jsonify({"status": "healthy"})

@app.route('/', defaults={'path': ''})
@app.route('/<path:path>')
def catch_all(path):
 return app.send_static_file("index.html")

Deployment Options

While lightweight and easy to use, Flask’s built-in server is not suitable
for production as it doesn’t scale well. Some of the options available for
properly running Flask in production are documented here.

If you want to deploy your Flask application to a WSGI server not listed here,
look up the server documentation about how to use a WSGI app with it. Just
remember that your Flask application object is the actual WSGI
application.

Hosted options

	Deploying Flask on Heroku [https://devcenter.heroku.com/articles/getting-started-with-python]

	Deploying Flask on Google App Engine [https://cloud.google.com/appengine/docs/standard/python3/runtime]

	Deploying Flask on Google Cloud Run [https://cloud.google.com/run/docs/quickstarts/build-and-deploy/python]

	Deploying Flask on AWS Elastic Beanstalk [https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-python-flask.html]

	Deploying on Azure (IIS) [https://docs.microsoft.com/en-us/azure/app-service/containers/how-to-configure-python]

	Deploying on PythonAnywhere [https://help.pythonanywhere.com/pages/Flask/]

Self-hosted options

	Standalone WSGI Servers
	Gunicorn

	uWSGI

	Gevent

	Eventlet

	Twisted Web

	Proxy Setups

	uWSGI
	Starting your app with uwsgi

	Configuring nginx

	mod_wsgi (Apache)
	Installing mod_wsgi

	Creating a .wsgi file

	Configuring Apache

	Troubleshooting

	Support for Automatic Reloading

	Working with Virtual Environments

	FastCGI
	Creating a .fcgi file

	Configuring Apache

	Configuring lighttpd

	Configuring nginx

	Running FastCGI Processes

	Debugging

	CGI
	Creating a .cgi file

	Server Setup

	ASGI

Standalone WSGI Servers

Most WSGI servers also provide HTTP servers, so they can run a WSGI
application and make it available externally.

It may still be a good idea to run the server behind a dedicated HTTP
server such as Apache or Nginx. See Proxy Setups if you
run into issues with that.

Gunicorn

Gunicorn [https://gunicorn.org/] is a WSGI and HTTP server for UNIX. To run a Flask
application, tell Gunicorn how to import your Flask app object.

$ gunicorn -w 4 -b 0.0.0.0:5000 your_project:app

The -w 4 option uses 4 workers to handle 4 requests at once. The
-b 0.0.0.0:5000 serves the application on all interfaces on port
5000.

Gunicorn provides many options for configuring the server, either
through a configuration file or with command line options. Use
gunicorn --help or see the docs for more information.

The command expects the name of your module or package to import and
the application instance within the module. If you use the application
factory pattern, you can pass a call to that.

$ gunicorn -w 4 -b 0.0.0.0:5000 "myproject:create_app()"

Async with Gevent or Eventlet

The default sync worker is appropriate for many use cases. If you need
asynchronous support, Gunicorn provides workers using either gevent [http://www.gevent.org/]
or eventlet [https://eventlet.net/]. This is not the same as Python’s async/await, or the
ASGI server spec.

When using either gevent or eventlet, greenlet>=1.0 is required,
otherwise context locals such as request will not work as expected.
When using PyPy, PyPy>=7.3.7 is required.

To use gevent:

$ gunicorn -k gevent -b 0.0.0.0:5000 your_project:app

To use eventlet:

$ gunicorn -k eventlet -b 0.0.0.0:5000 your_project:app

uWSGI

uWSGI [https://uwsgi-docs.readthedocs.io/en/latest/] is a fast application server written in C. It is very
configurable, which makes it more complicated to setup than Gunicorn.
It also provides many other utilities for writing robust web
applications. To run a Flask application, tell Gunicorn how to import
your Flask app object.

$ uwsgi --master -p 4 --http 0.0.0.0:5000 -w your_project:app

The -p 4 option uses 4 workers to handle 4 requests at once. The
--http 0.0.0.0:5000 serves the application on all interfaces on port
5000.

uWSGI has optimized integration with Nginx and Apache instead of using
a standard HTTP proxy. See configuring uWSGI and Nginx.

Async with Gevent

The default sync worker is appropriate for many use cases. If you need
asynchronous support, uWSGI provides workers using gevent [http://www.gevent.org/]. It also
supports other async modes, see the docs for more information. This is
not the same as Python’s async/await, or the ASGI server spec.

When using gevent, greenlet>=1.0 is required, otherwise context locals
such as request will not work as expected. When using PyPy,
PyPy>=7.3.7 is required.

$ uwsgi --master --gevent 100 --http 0.0.0.0:5000 -w your_project:app

Gevent

Prefer using Gunicorn [https://gunicorn.org/] with Gevent workers rather than using Gevent
directly. Gunicorn provides a much more configurable and
production-tested server. See the section on Gunicorn above.

Gevent [http://www.gevent.org/] allows writing asynchronous, coroutine-based code that looks
like standard synchronous Python. It uses greenlet [https://greenlet.readthedocs.io/en/latest/] to enable task
switching without writing async/await or using asyncio.

It provides a WSGI server that can handle many connections at once
instead of one per worker process.

Eventlet [https://eventlet.net/], described below, is another library that does the same
thing. Certain dependencies you have, or other consideration, may affect
which of the two you choose to use

To use gevent to serve your application, import its WSGIServer and
use it to run your app.

from gevent.pywsgi import WSGIServer
from your_project import app

http_server = WSGIServer(("", 5000), app)
http_server.serve_forever()

Eventlet

Prefer using Gunicorn [https://gunicorn.org/] with Eventlet workers rather than using
Eventlet directly. Gunicorn provides a much more configurable and
production-tested server. See the section on Gunicorn above.

Eventlet [https://eventlet.net/] allows writing asynchronous, coroutine-based code that looks
like standard synchronous Python. It uses greenlet [https://greenlet.readthedocs.io/en/latest/] to enable task
switching without writing async/await or using asyncio.

It provides a WSGI server that can handle many connections at once
instead of one per worker process.

Gevent [http://www.gevent.org/], described above, is another library that does the same
thing. Certain dependencies you have, or other consideration, may affect
which of the two you choose to use

To use eventlet to serve your application, import its wsgi.server
and use it to run your app.

import eventlet
from eventlet import wsgi
from your_project import app

wsgi.server(eventlet.listen(("", 5000), app)

Twisted Web

Twisted Web [https://twistedmatrix.com/trac/wiki/TwistedWeb] is the web server shipped with Twisted [https://twistedmatrix.com/trac/], a mature,
non-blocking event-driven networking library. Twisted Web comes with a
standard WSGI container which can be controlled from the command line using
the twistd utility:

$ twistd web --wsgi myproject.app

This example will run a Flask application called app from a module named
myproject.

Twisted Web supports many flags and options, and the twistd utility does
as well; see twistd -h and twistd web -h for more information. For
example, to run a Twisted Web server in the foreground, on port 8080, with an
application from myproject:

$ twistd -n web --port tcp:8080 --wsgi myproject.app

Proxy Setups

If you deploy your application using one of these servers behind an HTTP proxy
you will need to rewrite a few headers in order for the application to work.
The two problematic values in the WSGI environment usually are REMOTE_ADDR
and HTTP_HOST. You can configure your httpd to pass these headers, or you
can fix them in middleware. Werkzeug ships a fixer that will solve some common
setups, but you might want to write your own WSGI middleware for specific
setups.

Here’s a simple nginx configuration which proxies to an application served on
localhost at port 8000, setting appropriate headers:

server {
 listen 80;

 server_name _;

 access_log /var/log/nginx/access.log;
 error_log /var/log/nginx/error.log;

 location / {
 proxy_pass http://127.0.0.1:8000/;
 proxy_redirect off;

 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 }
}

If your httpd is not providing these headers, the most common setup invokes the
host being set from X-Forwarded-Host and the remote address from
X-Forwarded-For:

from werkzeug.middleware.proxy_fix import ProxyFix
app.wsgi_app = ProxyFix(app.wsgi_app, x_proto=1, x_host=1)

Trusting Headers

Please keep in mind that it is a security issue to use such a middleware in
a non-proxy setup because it will blindly trust the incoming headers which
might be forged by malicious clients.

If you want to rewrite the headers from another header, you might want to
use a fixer like this:

class CustomProxyFix(object):

 def __init__(self, app):
 self.app = app

 def __call__(self, environ, start_response):
 host = environ.get('HTTP_X_FHOST', '')
 if host:
 environ['HTTP_HOST'] = host
 return self.app(environ, start_response)

app.wsgi_app = CustomProxyFix(app.wsgi_app)

uWSGI

uWSGI is a deployment option on servers like nginx [https://nginx.org/], lighttpd [https://www.lighttpd.net/], and
cherokee [https://cherokee-project.com/]; see FastCGI and Standalone WSGI Servers for other options.
To use your WSGI application with uWSGI protocol you will need a uWSGI server
first. uWSGI is both a protocol and an application server; the application
server can serve uWSGI, FastCGI, and HTTP protocols.

The most popular uWSGI server is uwsgi [https://uwsgi-docs.readthedocs.io/en/latest/], which we will use for this
guide. Make sure to have it installed to follow along.

Watch Out

Please make sure in advance that any app.run() calls you might
have in your application file are inside an if __name__ ==
'__main__': block or moved to a separate file. Just make sure it’s
not called because this will always start a local WSGI server which
we do not want if we deploy that application to uWSGI.

Starting your app with uwsgi

uwsgi is designed to operate on WSGI callables found in python modules.

Given a flask application in myapp.py, use the following command:

$ uwsgi -s /tmp/yourapplication.sock --manage-script-name --mount /yourapplication=myapp:app

The --manage-script-name will move the handling of SCRIPT_NAME
to uwsgi, since it is smarter about that.
It is used together with the --mount directive which will make
requests to /yourapplication be directed to myapp:app.
If your application is accessible at root level, you can use a
single / instead of /yourapplication. myapp refers to the name of
the file of your flask application (without extension) or the module which
provides app. app is the callable inside of your application (usually
the line reads app = Flask(__name__)).

If you want to deploy your flask application inside of a virtual environment,
you need to also add --virtualenv /path/to/virtual/environment. You might
also need to add --plugin python or --plugin python3 depending on which
python version you use for your project.

Configuring nginx

A basic flask nginx configuration looks like this:

location = /yourapplication { rewrite ^ /yourapplication/; }
location /yourapplication { try_files $uri @yourapplication; }
location @yourapplication {
 include uwsgi_params;
 uwsgi_pass unix:/tmp/yourapplication.sock;
}

This configuration binds the application to /yourapplication. If you want
to have it in the URL root its a bit simpler:

location / { try_files $uri @yourapplication; }
location @yourapplication {
 include uwsgi_params;
 uwsgi_pass unix:/tmp/yourapplication.sock;
}

mod_wsgi (Apache)

If you are using the Apache [https://httpd.apache.org/] webserver, consider using mod_wsgi [https://github.com/GrahamDumpleton/mod_wsgi].

Watch Out

Please make sure in advance that any app.run() calls you might
have in your application file are inside an if __name__ ==
'__main__': block or moved to a separate file. Just make sure it’s
not called because this will always start a local WSGI server which
we do not want if we deploy that application to mod_wsgi.

Installing mod_wsgi

If you don’t have mod_wsgi installed yet you have to either install it
using a package manager or compile it yourself. The mod_wsgi
installation instructions [https://modwsgi.readthedocs.io/en/develop/installation.html] cover source installations on UNIX systems.

If you are using Ubuntu/Debian you can apt-get it and activate it as
follows:

$ apt-get install libapache2-mod-wsgi-py3

If you are using a yum based distribution (Fedora, OpenSUSE, etc..) you
can install it as follows:

$ yum install mod_wsgi

On FreeBSD install mod_wsgi by compiling the www/mod_wsgi port or by
using pkg_add:

$ pkg install ap24-py37-mod_wsgi

If you are using pkgsrc you can install mod_wsgi by compiling the
www/ap2-wsgi package.

If you encounter segfaulting child processes after the first apache
reload you can safely ignore them. Just restart the server.

Creating a .wsgi file

To run your application you need a yourapplication.wsgi file.
This file contains the code mod_wsgi is executing on startup
to get the application object. The object called application
in that file is then used as application.

For most applications the following file should be sufficient:

from yourapplication import app as application

If a factory function is used in a __init__.py file, then the function should be imported:

from yourapplication import create_app
application = create_app()

If you don’t have a factory function for application creation but a singleton
instance you can directly import that one as application.

Store that file somewhere that you will find it again (e.g.:
/var/www/yourapplication) and make sure that yourapplication and all
the libraries that are in use are on the python load path. If you don’t
want to install it system wide consider using a virtual python [https://pypi.org/project/virtualenv/]
instance. Keep in mind that you will have to actually install your
application into the virtualenv as well. Alternatively there is the
option to just patch the path in the .wsgi file before the import:

import sys
sys.path.insert(0, '/path/to/the/application')

Configuring Apache

The last thing you have to do is to create an Apache configuration file
for your application. In this example we are telling mod_wsgi to
execute the application under a different user for security reasons:

<VirtualHost *>
 ServerName example.com

 WSGIDaemonProcess yourapplication user=user1 group=group1 threads=5
 WSGIScriptAlias / /var/www/yourapplication/yourapplication.wsgi

 <Directory /var/www/yourapplication>
 WSGIProcessGroup yourapplication
 WSGIApplicationGroup %{GLOBAL}
 Order deny,allow
 Allow from all
 </Directory>
</VirtualHost>

Note: WSGIDaemonProcess isn’t implemented in Windows and Apache will
refuse to run with the above configuration. On a Windows system, eliminate those lines:

<VirtualHost *>
 ServerName example.com
 WSGIScriptAlias / C:\yourdir\yourapp.wsgi
 <Directory C:\yourdir>
 Order deny,allow
 Allow from all
 </Directory>
</VirtualHost>

Note: There have been some changes in access control configuration
for Apache 2.4 [https://httpd.apache.org/docs/trunk/upgrading.html].

Most notably, the syntax for directory permissions has changed from httpd 2.2

Order allow,deny
Allow from all

to httpd 2.4 syntax

Require all granted

For more information consult the mod_wsgi documentation [https://modwsgi.readthedocs.io/en/develop/index.html].

Troubleshooting

If your application does not run, follow this guide to troubleshoot:

	Problem: application does not run, errorlog shows SystemExit ignored
	You have an app.run() call in your application file that is not
guarded by an if __name__ == '__main__': condition. Either
remove that run() call from the file and move it
into a separate run.py file or put it into such an if block.

	Problem: application gives permission errors
	Probably caused by your application running as the wrong user. Make
sure the folders the application needs access to have the proper
privileges set and the application runs as the correct user
(user and group parameter to the WSGIDaemonProcess
directive)

	Problem: application dies with an error on print
	Keep in mind that mod_wsgi disallows doing anything with
sys.stdout and sys.stderr. You can disable this
protection from the config by setting the WSGIRestrictStdout to
off:

WSGIRestrictStdout Off

Alternatively you can also replace the standard out in the .wsgi file
with a different stream:

import sys
sys.stdout = sys.stderr

	Problem: accessing resources gives IO errors
	Your application probably is a single .py file you symlinked into
the site-packages folder. Please be aware that this does not work,
instead you either have to put the folder into the pythonpath the
file is stored in, or convert your application into a package.

The reason for this is that for non-installed packages, the module
filename is used to locate the resources and for symlinks the wrong
filename is picked up.

Support for Automatic Reloading

To help deployment tools you can activate support for automatic
reloading. Whenever something changes the .wsgi file, mod_wsgi will
reload all the daemon processes for us.

For that, just add the following directive to your Directory section:

WSGIScriptReloading On

Working with Virtual Environments

Virtual environments have the advantage that they never install the
required dependencies system wide so you have a better control over what
is used where. If you want to use a virtual environment with mod_wsgi
you have to modify your .wsgi file slightly.

Add the following lines to the top of your .wsgi file:

activate_this = '/path/to/env/bin/activate_this.py'
with open(activate_this) as file_:
 exec(file_.read(), dict(__file__=activate_this))

This sets up the load paths according to the settings of the virtual
environment. Keep in mind that the path has to be absolute.

FastCGI

FastCGI is a deployment option on servers like nginx [https://nginx.org/], lighttpd [https://www.lighttpd.net/], and
cherokee [https://cherokee-project.com/]; see uWSGI and Standalone WSGI Servers for other options.
To use your WSGI application with any of them you will need a FastCGI
server first. The most popular one is flup [https://pypi.org/project/flup/] which we will use for
this guide. Make sure to have it installed to follow along.

Watch Out

Please make sure in advance that any app.run() calls you might
have in your application file are inside an if __name__ ==
'__main__': block or moved to a separate file. Just make sure it’s
not called because this will always start a local WSGI server which
we do not want if we deploy that application to FastCGI.

Creating a .fcgi file

First you need to create the FastCGI server file. Let’s call it
yourapplication.fcgi:

#!/usr/bin/python
from flup.server.fcgi import WSGIServer
from yourapplication import app

if __name__ == '__main__':
 WSGIServer(app).run()

This is enough for Apache to work, however nginx and older versions of
lighttpd need a socket to be explicitly passed to communicate with the
FastCGI server. For that to work you need to pass the path to the
socket to the WSGIServer:

WSGIServer(application, bindAddress='/path/to/fcgi.sock').run()

The path has to be the exact same path you define in the server
config.

Save the yourapplication.fcgi file somewhere you will find it again.
It makes sense to have that in /var/www/yourapplication or something
similar.

Make sure to set the executable bit on that file so that the servers
can execute it:

$ chmod +x /var/www/yourapplication/yourapplication.fcgi

Configuring Apache

The example above is good enough for a basic Apache deployment but your
.fcgi file will appear in your application URL e.g.
example.com/yourapplication.fcgi/news/. There are few ways to configure
your application so that yourapplication.fcgi does not appear in the URL.
A preferable way is to use the ScriptAlias and SetHandler configuration
directives to route requests to the FastCGI server. The following example
uses FastCgiServer to start 5 instances of the application which will
handle all incoming requests:

LoadModule fastcgi_module /usr/lib64/httpd/modules/mod_fastcgi.so

FastCgiServer /var/www/html/yourapplication/app.fcgi -idle-timeout 300 -processes 5

<VirtualHost *>
 ServerName webapp1.mydomain.com
 DocumentRoot /var/www/html/yourapplication

 AddHandler fastcgi-script fcgi
 ScriptAlias / /var/www/html/yourapplication/app.fcgi/

 <Location />
 SetHandler fastcgi-script
 </Location>
</VirtualHost>

These processes will be managed by Apache. If you’re using a standalone
FastCGI server, you can use the FastCgiExternalServer directive instead.
Note that in the following the path is not real, it’s simply used as an
identifier to other
directives such as AliasMatch:

FastCgiServer /var/www/html/yourapplication -host 127.0.0.1:3000

If you cannot set ScriptAlias, for example on a shared web host, you can use
WSGI middleware to remove yourapplication.fcgi from the URLs. Set .htaccess:

<IfModule mod_fcgid.c>
 AddHandler fcgid-script .fcgi
 <Files ~ (\.fcgi)>
 SetHandler fcgid-script
 Options +FollowSymLinks +ExecCGI
 </Files>
</IfModule>

<IfModule mod_rewrite.c>
 Options +FollowSymlinks
 RewriteEngine On
 RewriteBase /
 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteRule ^(.*)$ yourapplication.fcgi/$1 [QSA,L]
</IfModule>

Set yourapplication.fcgi:

#!/usr/bin/python
#: optional path to your local python site-packages folder
import sys
sys.path.insert(0, '<your_local_path>/lib/python<your_python_version>/site-packages')

from flup.server.fcgi import WSGIServer
from yourapplication import app

class ScriptNameStripper(object):
 def __init__(self, app):
 self.app = app

 def __call__(self, environ, start_response):
 environ['SCRIPT_NAME'] = ''
 return self.app(environ, start_response)

app = ScriptNameStripper(app)

if __name__ == '__main__':
 WSGIServer(app).run()

Configuring lighttpd

A basic FastCGI configuration for lighttpd looks like that:

fastcgi.server = ("/yourapplication.fcgi" =>
 ((
 "socket" => "/tmp/yourapplication-fcgi.sock",
 "bin-path" => "/var/www/yourapplication/yourapplication.fcgi",
 "check-local" => "disable",
 "max-procs" => 1
))
)

alias.url = (
 "/static/" => "/path/to/your/static/"
)

url.rewrite-once = (
 "^(/static($|/.*))$" => "$1",
 "^(/.*)$" => "/yourapplication.fcgi$1"
)

Remember to enable the FastCGI, alias and rewrite modules. This configuration
binds the application to /yourapplication. If you want the application to
work in the URL root you have to work around a lighttpd bug with the
LighttpdCGIRootFix middleware.

Make sure to apply it only if you are mounting the application the URL
root. Also, see the Lighty docs for more information on FastCGI and Python [https://redmine.lighttpd.net/projects/lighttpd/wiki/Docs_ModFastCGI] (note that
explicitly passing a socket to run() is no longer necessary).

Configuring nginx

Installing FastCGI applications on nginx is a bit different because by
default no FastCGI parameters are forwarded.

A basic Flask FastCGI configuration for nginx looks like this:

location = /yourapplication { rewrite ^ /yourapplication/ last; }
location /yourapplication { try_files $uri @yourapplication; }
location @yourapplication {
 include fastcgi_params;
 fastcgi_split_path_info ^(/yourapplication)(.*)$;
 fastcgi_param PATH_INFO $fastcgi_path_info;
 fastcgi_param SCRIPT_NAME $fastcgi_script_name;
 fastcgi_pass unix:/tmp/yourapplication-fcgi.sock;
}

This configuration binds the application to /yourapplication. If you
want to have it in the URL root it’s a bit simpler because you don’t
have to figure out how to calculate PATH_INFO and SCRIPT_NAME:

location / { try_files $uri @yourapplication; }
location @yourapplication {
 include fastcgi_params;
 fastcgi_param PATH_INFO $fastcgi_script_name;
 fastcgi_param SCRIPT_NAME "";
 fastcgi_pass unix:/tmp/yourapplication-fcgi.sock;
}

Running FastCGI Processes

Since nginx and others do not load FastCGI apps, you have to do it by
yourself. Supervisor can manage FastCGI processes. [http://supervisord.org/configuration.html#fcgi-program-x-section-settings]
You can look around for other FastCGI process managers or write a script
to run your .fcgi file at boot, e.g. using a SysV init.d script.
For a temporary solution, you can always run the .fcgi script inside
GNU screen. See man screen for details, and note that this is a
manual solution which does not persist across system restart:

$ screen
$ /var/www/yourapplication/yourapplication.fcgi

Debugging

FastCGI deployments tend to be hard to debug on most web servers. Very
often the only thing the server log tells you is something along the
lines of “premature end of headers”. In order to debug the application
the only thing that can really give you ideas why it breaks is switching
to the correct user and executing the application by hand.

This example assumes your application is called application.fcgi and
that your web server user is www-data:

$ su www-data
$ cd /var/www/yourapplication
$ python application.fcgi
Traceback (most recent call last):
 File "yourapplication.fcgi", line 4, in <module>
ImportError: No module named yourapplication

In this case the error seems to be “yourapplication” not being on the
python path. Common problems are:

	Relative paths being used. Don’t rely on the current working directory.

	The code depending on environment variables that are not set by the
web server.

	Different python interpreters being used.

CGI

If all other deployment methods do not work, CGI will work for sure.
CGI is supported by all major servers but usually has a sub-optimal
performance.

This is also the way you can use a Flask application on Google’s App
Engine [https://cloud.google.com/appengine/docs/], where execution happens in a CGI-like environment.

Watch Out

Please make sure in advance that any app.run() calls you might
have in your application file are inside an if __name__ ==
'__main__': block or moved to a separate file. Just make sure it’s
not called because this will always start a local WSGI server which
we do not want if we deploy that application to CGI / app engine.

With CGI, you will also have to make sure that your code does not contain
any print statements, or that sys.stdout is overridden by something
that doesn’t write into the HTTP response.

Creating a .cgi file

First you need to create the CGI application file. Let’s call it
yourapplication.cgi:

#!/usr/bin/python
from wsgiref.handlers import CGIHandler
from yourapplication import app

CGIHandler().run(app)

Server Setup

Usually there are two ways to configure the server. Either just copy the
.cgi into a cgi-bin (and use mod_rewrite or something similar to
rewrite the URL) or let the server point to the file directly.

In Apache for example you can put something like this into the config:

ScriptAlias /app /path/to/the/application.cgi

On shared webhosting, though, you might not have access to your Apache config.
In this case, a file called .htaccess, sitting in the public directory
you want your app to be available, works too but the ScriptAlias directive
won’t work in that case:

RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f # Don't interfere with static files
RewriteRule ^(.*)$ /path/to/the/application.cgi/$1 [L]

For more information consult the documentation of your webserver.

ASGI

If you’d like to use an ASGI server you will need to utilise WSGI to
ASGI middleware. The asgiref
WsgiToAsgi [https://github.com/django/asgiref#wsgi-to-asgi-adapter]
adapter is recommended as it integrates with the event loop used for
Flask’s Using async and await support. You can use the adapter by
wrapping the Flask app,

from asgiref.wsgi import WsgiToAsgi
from flask import Flask

app = Flask(__name__)

...

asgi_app = WsgiToAsgi(app)

and then serving the asgi_app with the ASGI server, e.g. using
Hypercorn [https://gitlab.com/pgjones/hypercorn],

$ hypercorn module:asgi_app

Becoming Big

Here are your options when growing your codebase or scaling your application.

Read the Source.

Flask started in part to demonstrate how to build your own framework on top of
existing well-used tools Werkzeug (WSGI) and Jinja (templating), and as it
developed, it became useful to a wide audience. As you grow your codebase,
don’t just use Flask – understand it. Read the source. Flask’s code is
written to be read; its documentation is published so you can use its internal
APIs. Flask sticks to documented APIs in upstream libraries, and documents its
internal utilities so that you can find the hook points needed for your
project.

Hook. Extend.

The API docs are full of available overrides, hook points, and
Signals. You can provide custom classes for things like the
request and response objects. Dig deeper on the APIs you use, and look
for the customizations which are available out of the box in a Flask
release. Look for ways in which your project can be refactored into a
collection of utilities and Flask extensions. Explore the many
Extensions in the community, and look for patterns to build your
own extensions if you do not find the tools you need.

Subclass.

The Flask class has many methods designed for subclassing. You
can quickly add or customize behavior by subclassing Flask (see
the linked method docs) and using that subclass wherever you instantiate an
application class. This works well with Application Factories.
See Subclassing Flask for an example.

Wrap with middleware.

The Application Dispatching pattern shows in detail how to apply middleware. You
can introduce WSGI middleware to wrap your Flask instances and introduce fixes
and changes at the layer between your Flask application and your HTTP
server. Werkzeug includes several middlewares [https://werkzeug.palletsprojects.com/middleware/].

Fork.

If none of the above options work, fork Flask. The majority of code of Flask
is within Werkzeug and Jinja2. These libraries do the majority of the work.
Flask is just the paste that glues those together. For every project there is
the point where the underlying framework gets in the way (due to assumptions
the original developers had). This is natural because if this would not be the
case, the framework would be a very complex system to begin with which causes a
steep learning curve and a lot of user frustration.

This is not unique to Flask. Many people use patched and modified
versions of their framework to counter shortcomings. This idea is also
reflected in the license of Flask. You don’t have to contribute any
changes back if you decide to modify the framework.

The downside of forking is of course that Flask extensions will most
likely break because the new framework has a different import name.
Furthermore integrating upstream changes can be a complex process,
depending on the number of changes. Because of that, forking should be
the very last resort.

Scale like a pro.

For many web applications the complexity of the code is less an issue than
the scaling for the number of users or data entries expected. Flask by
itself is only limited in terms of scaling by your application code, the
data store you want to use and the Python implementation and webserver you
are running on.

Scaling well means for example that if you double the amount of servers
you get about twice the performance. Scaling bad means that if you add a
new server the application won’t perform any better or would not even
support a second server.

There is only one limiting factor regarding scaling in Flask which are
the context local proxies. They depend on context which in Flask is
defined as being either a thread, process or greenlet. If your server
uses some kind of concurrency that is not based on threads or greenlets,
Flask will no longer be able to support these global proxies. However the
majority of servers are using either threads, greenlets or separate
processes to achieve concurrency which are all methods well supported by
the underlying Werkzeug library.

Discuss with the community.

The Flask developers keep the framework accessible to users with codebases big
and small. If you find an obstacle in your way, caused by Flask, don’t hesitate
to contact the developers on the mailing list or Discord server. The best way for
the Flask and Flask extension developers to improve the tools for larger
applications is getting feedback from users.

Using async and await

New in version 2.0.

Routes, error handlers, before request, after request, and teardown
functions can all be coroutine functions if Flask is installed with the
async extra (pip install flask[async]). This allows views to be
defined with async def and use await.

@app.route("/get-data")
async def get_data():
 data = await async_db_query(...)
 return jsonify(data)

Pluggable class-based views also support handlers that are implemented as
coroutines. This applies to the dispatch_request()
method in views that inherit from the flask.views.View class, as
well as all the HTTP method handlers in views that inherit from the
flask.views.MethodView class.

Using async on Windows on Python 3.8

Python 3.8 has a bug related to asyncio on Windows. If you encounter
something like ValueError: set_wakeup_fd only works in main thread,
please upgrade to Python 3.9.

Using async with greenlet

When using gevent or eventlet to serve an application or patch the
runtime, greenlet>=1.0 is required. When using PyPy, PyPy>=7.3.7 is
required.

Performance

Async functions require an event loop to run. Flask, as a WSGI
application, uses one worker to handle one request/response cycle.
When a request comes in to an async view, Flask will start an event loop
in a thread, run the view function there, then return the result.

Each request still ties up one worker, even for async views. The upside
is that you can run async code within a view, for example to make
multiple concurrent database queries, HTTP requests to an external API,
etc. However, the number of requests your application can handle at one
time will remain the same.

Async is not inherently faster than sync code. Async is beneficial
when performing concurrent IO-bound tasks, but will probably not improve
CPU-bound tasks. Traditional Flask views will still be appropriate for
most use cases, but Flask’s async support enables writing and using
code that wasn’t possible natively before.

Background tasks

Async functions will run in an event loop until they complete, at
which stage the event loop will stop. This means any additional
spawned tasks that haven’t completed when the async function completes
will be cancelled. Therefore you cannot spawn background tasks, for
example via asyncio.create_task.

If you wish to use background tasks it is best to use a task queue to
trigger background work, rather than spawn tasks in a view
function. With that in mind you can spawn asyncio tasks by serving
Flask with an ASGI server and utilising the asgiref WsgiToAsgi adapter
as described in ASGI. This works as the adapter creates an
event loop that runs continually.

When to use Quart instead

Flask’s async support is less performant than async-first frameworks due
to the way it is implemented. If you have a mainly async codebase it
would make sense to consider Quart [https://gitlab.com/pgjones/quart]. Quart is a reimplementation of
Flask based on the ASGI [https://asgi.readthedocs.io/en/latest/] standard instead of WSGI. This allows it to
handle many concurrent requests, long running requests, and websockets
without requiring multiple worker processes or threads.

It has also already been possible to run Flask with Gevent or Eventlet
to get many of the benefits of async request handling. These libraries
patch low-level Python functions to accomplish this, whereas async/
await and ASGI use standard, modern Python capabilities. Deciding
whether you should use Flask, Quart, or something else is ultimately up
to understanding the specific needs of your project.

Extensions

Flask extensions predating Flask’s async support do not expect async views.
If they provide decorators to add functionality to views, those will probably
not work with async views because they will not await the function or be
awaitable. Other functions they provide will not be awaitable either and
will probably be blocking if called within an async view.

Extension authors can support async functions by utilising the
flask.Flask.ensure_sync() method. For example, if the extension
provides a view function decorator add ensure_sync before calling
the decorated function,

def extension(func):
 @wraps(func)
 def wrapper(*args, **kwargs):
 ... # Extension logic
 return current_app.ensure_sync(func)(*args, **kwargs)

 return wrapper

Check the changelog of the extension you want to use to see if they’ve
implemented async support, or make a feature request or PR to them.

Other event loops

At the moment Flask only supports asyncio. It’s possible to
override flask.Flask.ensure_sync() to change how async functions
are wrapped to use a different library.

API

This part of the documentation covers all the interfaces of Flask. For
parts where Flask depends on external libraries, we document the most
important right here and provide links to the canonical documentation.

Application Object

Blueprint Objects

Incoming Request Data

	
flask.request

	To access incoming request data, you can use the global request
object. Flask parses incoming request data for you and gives you
access to it through that global object. Internally Flask makes
sure that you always get the correct data for the active thread if you
are in a multithreaded environment.

This is a proxy. See Notes On Proxies for more information.

The request object is an instance of a Request.

Response Objects

Sessions

If you have set Flask.secret_key (or configured it from
SECRET_KEY) you can use sessions in Flask applications. A session makes
it possible to remember information from one request to another. The way Flask
does this is by using a signed cookie. The user can look at the session
contents, but can’t modify it unless they know the secret key, so make sure to
set that to something complex and unguessable.

To access the current session you can use the session object:

	
class flask.session

	The session object works pretty much like an ordinary dict, with the
difference that it keeps track of modifications.

This is a proxy. See Notes On Proxies for more information.

The following attributes are interesting:

	
new

	True if the session is new, False otherwise.

	
modified

	True if the session object detected a modification. Be advised
that modifications on mutable structures are not picked up
automatically, in that situation you have to explicitly set the
attribute to True yourself. Here an example:

this change is not picked up because a mutable object (here
a list) is changed.
session['objects'].append(42)
so mark it as modified yourself
session.modified = True

	
permanent

	If set to True the session lives for
permanent_session_lifetime seconds. The
default is 31 days. If set to False (which is the default) the
session will be deleted when the user closes the browser.

Session Interface

New in version 0.8.

The session interface provides a simple way to replace the session
implementation that Flask is using.

Notice

The PERMANENT_SESSION_LIFETIME config key can also be an integer
starting with Flask 0.8. Either catch this down yourself or use
the permanent_session_lifetime attribute on the
app which converts the result to an integer automatically.

Test Client

Test CLI Runner

Application Globals

To share data that is valid for one request only from one function to
another, a global variable is not good enough because it would break in
threaded environments. Flask provides you with a special object that
ensures it is only valid for the active request and that will return
different values for each request. In a nutshell: it does the right
thing, like it does for request and session.

	
flask.g

	A namespace object that can store data during an
application context. This is an instance of
Flask.app_ctx_globals_class, which defaults to
ctx._AppCtxGlobals.

This is a good place to store resources during a request. During
testing, you can use the Faking Resources and Context pattern to
pre-configure such resources.

This is a proxy. See Notes On Proxies for more information.

Changed in version 0.10: Bound to the application context instead of the request context.

Useful Functions and Classes

	
flask.current_app

	A proxy to the application handling the current request. This is
useful to access the application without needing to import it, or if
it can’t be imported, such as when using the application factory
pattern or in blueprints and extensions.

This is only available when an
application context is pushed. This happens
automatically during requests and CLI commands. It can be controlled
manually with app_context().

This is a proxy. See Notes On Proxies for more information.

Message Flashing

JSON Support

Flask uses the built-in json module for handling JSON. It will
use the current blueprint’s or application’s JSON encoder and decoder
for easier customization. By default it handles some extra data types:

	datetime.datetime and datetime.date are serialized
to RFC 822 [https://tools.ietf.org/html/rfc822.html] strings. This is the same as the HTTP date format.

	uuid.UUID is serialized to a string.

	dataclasses.dataclass is passed to
dataclasses.asdict().

	Markup (or any object with a __html__
method) will call the __html__ method to get a string.

Jinja’s |tojson filter is configured to use Flask’s dumps()
function. The filter marks the output with |safe automatically. Use
the filter to render data inside <script> tags.

<script>
 const names = {{ names|tosjon }};
 renderChart(names, {{ axis_data|tojson }});
</script>

Template Rendering

Configuration

Stream Helpers

Useful Internals

	
flask._request_ctx_stack

	The internal LocalStack that holds
RequestContext instances. Typically, the
request and session proxies should be accessed
instead of the stack. It may be useful to access the stack in
extension code.

The following attributes are always present on each layer of the
stack:

	app
	the active Flask application.

	url_adapter
	the URL adapter that was used to match the request.

	request
	the current request object.

	session
	the active session object.

	g
	an object with all the attributes of the flask.g object.

	flashes
	an internal cache for the flashed messages.

Example usage:

from flask import _request_ctx_stack

def get_session():
 ctx = _request_ctx_stack.top
 if ctx is not None:
 return ctx.session

	
flask._app_ctx_stack

	The internal LocalStack that holds
AppContext instances. Typically, the
current_app and g proxies should be accessed instead
of the stack. Extensions can access the contexts on the stack as a
namespace to store data.

New in version 0.9.

Signals

New in version 0.6.

	
signals.signals_available

	True if the signaling system is available. This is the case
when blinker [https://pypi.org/project/blinker/] is installed.

The following signals exist in Flask:

	
flask.template_rendered

	This signal is sent when a template was successfully rendered. The
signal is invoked with the instance of the template as template
and the context as dictionary (named context).

Example subscriber:

def log_template_renders(sender, template, context, **extra):
 sender.logger.debug('Rendering template "%s" with context %s',
 template.name or 'string template',
 context)

from flask import template_rendered
template_rendered.connect(log_template_renders, app)

	
flask.before_render_template

	This signal is sent before template rendering process. The
signal is invoked with the instance of the template as template
and the context as dictionary (named context).

Example subscriber:

def log_template_renders(sender, template, context, **extra):
 sender.logger.debug('Rendering template "%s" with context %s',
 template.name or 'string template',
 context)

from flask import before_render_template
before_render_template.connect(log_template_renders, app)

	
flask.request_started

	This signal is sent when the request context is set up, before
any request processing happens. Because the request context is already
bound, the subscriber can access the request with the standard global
proxies such as request.

Example subscriber:

def log_request(sender, **extra):
 sender.logger.debug('Request context is set up')

from flask import request_started
request_started.connect(log_request, app)

	
flask.request_finished

	This signal is sent right before the response is sent to the client.
It is passed the response to be sent named response.

Example subscriber:

def log_response(sender, response, **extra):
 sender.logger.debug('Request context is about to close down. '
 'Response: %s', response)

from flask import request_finished
request_finished.connect(log_response, app)

	
flask.got_request_exception

	This signal is sent when an unhandled exception happens during
request processing, including when debugging. The exception is
passed to the subscriber as exception.

This signal is not sent for
HTTPException, or other exceptions that
have error handlers registered, unless the exception was raised from
an error handler.

This example shows how to do some extra logging if a theoretical
SecurityException was raised:

from flask import got_request_exception

def log_security_exception(sender, exception, **extra):
 if not isinstance(exception, SecurityException):
 return

 security_logger.exception(
 f"SecurityException at {request.url!r}",
 exc_info=exception,
)

got_request_exception.connect(log_security_exception, app)

	
flask.request_tearing_down

	This signal is sent when the request is tearing down. This is always
called, even if an exception is caused. Currently functions listening
to this signal are called after the regular teardown handlers, but this
is not something you can rely on.

Example subscriber:

def close_db_connection(sender, **extra):
 session.close()

from flask import request_tearing_down
request_tearing_down.connect(close_db_connection, app)

As of Flask 0.9, this will also be passed an exc keyword argument
that has a reference to the exception that caused the teardown if
there was one.

	
flask.appcontext_tearing_down

	This signal is sent when the app context is tearing down. This is always
called, even if an exception is caused. Currently functions listening
to this signal are called after the regular teardown handlers, but this
is not something you can rely on.

Example subscriber:

def close_db_connection(sender, **extra):
 session.close()

from flask import appcontext_tearing_down
appcontext_tearing_down.connect(close_db_connection, app)

This will also be passed an exc keyword argument that has a reference
to the exception that caused the teardown if there was one.

	
flask.appcontext_pushed

	This signal is sent when an application context is pushed. The sender
is the application. This is usually useful for unittests in order to
temporarily hook in information. For instance it can be used to
set a resource early onto the g object.

Example usage:

from contextlib import contextmanager
from flask import appcontext_pushed

@contextmanager
def user_set(app, user):
 def handler(sender, **kwargs):
 g.user = user
 with appcontext_pushed.connected_to(handler, app):
 yield

And in the testcode:

def test_user_me(self):
 with user_set(app, 'john'):
 c = app.test_client()
 resp = c.get('/users/me')
 assert resp.data == 'username=john'

New in version 0.10.

	
flask.appcontext_popped

	This signal is sent when an application context is popped. The sender
is the application. This usually falls in line with the
appcontext_tearing_down signal.

New in version 0.10.

	
flask.message_flashed

	This signal is sent when the application is flashing a message. The
messages is sent as message keyword argument and the category as
category.

Example subscriber:

recorded = []
def record(sender, message, category, **extra):
 recorded.append((message, category))

from flask import message_flashed
message_flashed.connect(record, app)

New in version 0.10.

	
class signals.Namespace

	An alias for blinker.base.Namespace if blinker is available,
otherwise a dummy class that creates fake signals. This class is
available for Flask extensions that want to provide the same fallback
system as Flask itself.

	
signal(name, doc=None)

	Creates a new signal for this namespace if blinker is available,
otherwise returns a fake signal that has a send method that will
do nothing but will fail with a RuntimeError for all other
operations, including connecting.

Class-Based Views

New in version 0.7.

URL Route Registrations

Generally there are three ways to define rules for the routing system:

	You can use the flask.Flask.route() decorator.

	You can use the flask.Flask.add_url_rule() function.

	You can directly access the underlying Werkzeug routing system
which is exposed as flask.Flask.url_map.

Variable parts in the route can be specified with angular brackets
(/user/<username>). By default a variable part in the URL accepts any
string without a slash however a different converter can be specified as
well by using <converter:name>.

Variable parts are passed to the view function as keyword arguments.

The following converters are available:

	string

	accepts any text without a slash (the default)

	int

	accepts integers

	float

	like int but for floating point values

	path

	like the default but also accepts slashes

	any

	matches one of the items provided

	uuid

	accepts UUID strings

Custom converters can be defined using flask.Flask.url_map.

Here are some examples:

@app.route('/')
def index():
 pass

@app.route('/<username>')
def show_user(username):
 pass

@app.route('/post/<int:post_id>')
def show_post(post_id):
 pass

An important detail to keep in mind is how Flask deals with trailing
slashes. The idea is to keep each URL unique so the following rules
apply:

	If a rule ends with a slash and is requested without a slash by the
user, the user is automatically redirected to the same page with a
trailing slash attached.

	If a rule does not end with a trailing slash and the user requests the
page with a trailing slash, a 404 not found is raised.

This is consistent with how web servers deal with static files. This
also makes it possible to use relative link targets safely.

You can also define multiple rules for the same function. They have to be
unique however. Defaults can also be specified. Here for example is a
definition for a URL that accepts an optional page:

@app.route('/users/', defaults={'page': 1})
@app.route('/users/page/<int:page>')
def show_users(page):
 pass

This specifies that /users/ will be the URL for page one and
/users/page/N will be the URL for page N.

If a URL contains a default value, it will be redirected to its simpler
form with a 301 redirect. In the above example, /users/page/1 will
be redirected to /users/. If your route handles GET and POST
requests, make sure the default route only handles GET, as redirects
can’t preserve form data.

@app.route('/region/', defaults={'id': 1})
@app.route('/region/<int:id>', methods=['GET', 'POST'])
def region(id):
 pass

Here are the parameters that route() and
add_url_rule() accept. The only difference is that
with the route parameter the view function is defined with the decorator
instead of the view_func parameter.

	rule

	the URL rule as string

	endpoint

	the endpoint for the registered URL rule. Flask itself
assumes that the name of the view function is the name
of the endpoint if not explicitly stated.

	view_func

	the function to call when serving a request to the
provided endpoint. If this is not provided one can
specify the function later by storing it in the
view_functions dictionary with the
endpoint as key.

	defaults

	A dictionary with defaults for this rule. See the
example above for how defaults work.

	subdomain

	specifies the rule for the subdomain in case subdomain
matching is in use. If not specified the default
subdomain is assumed.

	**options

	the options to be forwarded to the underlying
Rule object. A change to
Werkzeug is handling of method options. methods is a list
of methods this rule should be limited to (GET, POST
etc.). By default a rule just listens for GET (and
implicitly HEAD). Starting with Flask 0.6, OPTIONS is
implicitly added and handled by the standard request
handling. They have to be specified as keyword arguments.

View Function Options

For internal usage the view functions can have some attributes attached to
customize behavior the view function would normally not have control over.
The following attributes can be provided optionally to either override
some defaults to add_url_rule() or general behavior:

	__name__: The name of a function is by default used as endpoint. If
endpoint is provided explicitly this value is used. Additionally this
will be prefixed with the name of the blueprint by default which
cannot be customized from the function itself.

	methods: If methods are not provided when the URL rule is added,
Flask will look on the view function object itself if a methods
attribute exists. If it does, it will pull the information for the
methods from there.

	provide_automatic_options: if this attribute is set Flask will
either force enable or disable the automatic implementation of the
HTTP OPTIONS response. This can be useful when working with
decorators that want to customize the OPTIONS response on a per-view
basis.

	required_methods: if this attribute is set, Flask will always add
these methods when registering a URL rule even if the methods were
explicitly overridden in the route() call.

Full example:

def index():
 if request.method == 'OPTIONS':
 # custom options handling here
 ...
 return 'Hello World!'
index.provide_automatic_options = False
index.methods = ['GET', 'OPTIONS']

app.add_url_rule('/', index)

New in version 0.8: The provide_automatic_options functionality was added.

Command Line Interface

Design Decisions in Flask

If you are curious why Flask does certain things the way it does and not
differently, this section is for you. This should give you an idea about
some of the design decisions that may appear arbitrary and surprising at
first, especially in direct comparison with other frameworks.

The Explicit Application Object

A Python web application based on WSGI has to have one central callable
object that implements the actual application. In Flask this is an
instance of the Flask class. Each Flask application has
to create an instance of this class itself and pass it the name of the
module, but why can’t Flask do that itself?

Without such an explicit application object the following code:

from flask import Flask
app = Flask(__name__)

@app.route('/')
def index():
 return 'Hello World!'

Would look like this instead:

from hypothetical_flask import route

@route('/')
def index():
 return 'Hello World!'

There are three major reasons for this. The most important one is that
implicit application objects require that there may only be one instance at
the time. There are ways to fake multiple applications with a single
application object, like maintaining a stack of applications, but this
causes some problems I won’t outline here in detail. Now the question is:
when does a microframework need more than one application at the same
time? A good example for this is unit testing. When you want to test
something it can be very helpful to create a minimal application to test
specific behavior. When the application object is deleted everything it
allocated will be freed again.

Another thing that becomes possible when you have an explicit object lying
around in your code is that you can subclass the base class
(Flask) to alter specific behavior. This would not be
possible without hacks if the object were created ahead of time for you
based on a class that is not exposed to you.

But there is another very important reason why Flask depends on an
explicit instantiation of that class: the package name. Whenever you
create a Flask instance you usually pass it __name__ as package name.
Flask depends on that information to properly load resources relative
to your module. With Python’s outstanding support for reflection it can
then access the package to figure out where the templates and static files
are stored (see open_resource()). Now obviously there
are frameworks around that do not need any configuration and will still be
able to load templates relative to your application module. But they have
to use the current working directory for that, which is a very unreliable
way to determine where the application is. The current working directory
is process-wide and if you are running multiple applications in one
process (which could happen in a webserver without you knowing) the paths
will be off. Worse: many webservers do not set the working directory to
the directory of your application but to the document root which does not
have to be the same folder.

The third reason is “explicit is better than implicit”. That object is
your WSGI application, you don’t have to remember anything else. If you
want to apply a WSGI middleware, just wrap it and you’re done (though
there are better ways to do that so that you do not lose the reference
to the application object wsgi_app()).

Furthermore this design makes it possible to use a factory function to
create the application which is very helpful for unit testing and similar
things (Application Factories).

The Routing System

Flask uses the Werkzeug routing system which was designed to
automatically order routes by complexity. This means that you can declare
routes in arbitrary order and they will still work as expected. This is a
requirement if you want to properly implement decorator based routing
since decorators could be fired in undefined order when the application is
split into multiple modules.

Another design decision with the Werkzeug routing system is that routes
in Werkzeug try to ensure that URLs are unique. Werkzeug will go quite far
with that in that it will automatically redirect to a canonical URL if a route
is ambiguous.

One Template Engine

Flask decides on one template engine: Jinja2. Why doesn’t Flask have a
pluggable template engine interface? You can obviously use a different
template engine, but Flask will still configure Jinja2 for you. While
that limitation that Jinja2 is always configured will probably go away,
the decision to bundle one template engine and use that will not.

Template engines are like programming languages and each of those engines
has a certain understanding about how things work. On the surface they
all work the same: you tell the engine to evaluate a template with a set
of variables and take the return value as string.

But that’s about where similarities end. Jinja2 for example has an
extensive filter system, a certain way to do template inheritance,
support for reusable blocks (macros) that can be used from inside
templates and also from Python code, supports iterative template
rendering, configurable syntax and more. On the other hand an engine
like Genshi is based on XML stream evaluation, template inheritance by
taking the availability of XPath into account and more. Mako on the
other hand treats templates similar to Python modules.

When it comes to connecting a template engine with an application or
framework there is more than just rendering templates. For instance,
Flask uses Jinja2’s extensive autoescaping support. Also it provides
ways to access macros from Jinja2 templates.

A template abstraction layer that would not take the unique features of
the template engines away is a science on its own and a too large
undertaking for a microframework like Flask.

Furthermore extensions can then easily depend on one template language
being present. You can easily use your own templating language, but an
extension could still depend on Jinja itself.

Micro with Dependencies

Why does Flask call itself a microframework and yet it depends on two
libraries (namely Werkzeug and Jinja2). Why shouldn’t it? If we look
over to the Ruby side of web development there we have a protocol very
similar to WSGI. Just that it’s called Rack there, but besides that it
looks very much like a WSGI rendition for Ruby. But nearly all
applications in Ruby land do not work with Rack directly, but on top of a
library with the same name. This Rack library has two equivalents in
Python: WebOb (formerly Paste) and Werkzeug. Paste is still around but
from my understanding it’s sort of deprecated in favour of WebOb. The
development of WebOb and Werkzeug started side by side with similar ideas
in mind: be a good implementation of WSGI for other applications to take
advantage.

Flask is a framework that takes advantage of the work already done by
Werkzeug to properly interface WSGI (which can be a complex task at
times). Thanks to recent developments in the Python package
infrastructure, packages with dependencies are no longer an issue and
there are very few reasons against having libraries that depend on others.

Thread Locals

Flask uses thread local objects (context local objects in fact, they
support greenlet contexts as well) for request, session and an extra
object you can put your own things on (g). Why is that and
isn’t that a bad idea?

Yes it is usually not such a bright idea to use thread locals. They cause
troubles for servers that are not based on the concept of threads and make
large applications harder to maintain. However Flask is just not designed
for large applications or asynchronous servers. Flask wants to make it
quick and easy to write a traditional web application.

Also see the Becoming Big section of the documentation for some
inspiration for larger applications based on Flask.

Async/await and ASGI support

Flask supports async coroutines for view functions by executing the
coroutine on a separate thread instead of using an event loop on the
main thread as an async-first (ASGI) framework would. This is necessary
for Flask to remain backwards compatible with extensions and code built
before async was introduced into Python. This compromise introduces
a performance cost compared with the ASGI frameworks, due to the
overhead of the threads.

Due to how tied to WSGI Flask’s code is, it’s not clear if it’s possible
to make the Flask class support ASGI and WSGI at the same time. Work
is currently being done in Werkzeug to work with ASGI, which may
eventually enable support in Flask as well.

See Using async and await for more discussion.

What Flask is, What Flask is Not

Flask will never have a database layer. It will not have a form library
or anything else in that direction. Flask itself just bridges to Werkzeug
to implement a proper WSGI application and to Jinja2 to handle templating.
It also binds to a few common standard library packages such as logging.
Everything else is up for extensions.

Why is this the case? Because people have different preferences and
requirements and Flask could not meet those if it would force any of this
into the core. The majority of web applications will need a template
engine in some sort. However not every application needs a SQL database.

The idea of Flask is to build a good foundation for all applications.
Everything else is up to you or extensions.

HTML/XHTML FAQ

The Citus documentation and example applications are using HTML5. You
may notice that in many situations, when end tags are optional they are
not used, so that the HTML is cleaner and faster to load. Because there
is much confusion about HTML and XHTML among developers, this document tries
to answer some of the major questions.

History of XHTML

For a while, it appeared that HTML was about to be replaced by XHTML.
However, barely any websites on the Internet are actual XHTML (which is
HTML processed using XML rules). There are a couple of major reasons
why this is the case. One of them is Internet Explorer’s lack of proper
XHTML support. The XHTML spec states that XHTML must be served with the MIME
type application/xhtml+xml, but Internet Explorer refuses
to read files with that MIME type.
While it is relatively easy to configure Web servers to serve XHTML properly,
few people do. This is likely because properly using XHTML can be quite
painful.

One of the most important causes of pain is XML’s draconian (strict and
ruthless) error handling. When an XML parsing error is encountered,
the browser is supposed to show the user an ugly error message, instead
of attempting to recover from the error and display what it can. Most of
the (X)HTML generation on the web is based on non-XML template engines
(such as Jinja, the one used in Flask) which do not protect you from
accidentally creating invalid XHTML. There are XML based template engines,
such as Kid and the popular Genshi, but they often come with a larger
runtime overhead and are not as straightforward to use because they have
to obey XML rules.

The majority of users, however, assumed they were properly using XHTML.
They wrote an XHTML doctype at the top of the document and self-closed all
the necessary tags (
 becomes
 or
</br> in XHTML).
However, even if the document properly validates as XHTML, what really
determines XHTML/HTML processing in browsers is the MIME type, which as
said before is often not set properly. So the valid XHTML was being treated
as invalid HTML.

XHTML also changed the way JavaScript is used. To properly work with XHTML,
programmers have to use the namespaced DOM interface with the XHTML
namespace to query for HTML elements.

History of HTML5

Development of the HTML5 specification was started in 2004 under the name
“Web Applications 1.0” by the Web Hypertext Application Technology Working
Group, or WHATWG (which was formed by the major browser vendors Apple,
Mozilla, and Opera) with the goal of writing a new and improved HTML
specification, based on existing browser behavior instead of unrealistic
and backwards-incompatible specifications.

For example, in HTML4 <title/Hello/ theoretically parses exactly the
same as <title>Hello</title>. However, since people were using
XHTML-like tags along the lines of <link />, browser vendors implemented
the XHTML syntax over the syntax defined by the specification.

In 2007, the specification was adopted as the basis of a new HTML
specification under the umbrella of the W3C, known as HTML5. Currently,
it appears that XHTML is losing traction, as the XHTML 2 working group has
been disbanded and HTML5 is being implemented by all major browser vendors.

HTML versus XHTML

The following table gives you a quick overview of features available in
HTML 4.01, XHTML 1.1 and HTML5. (XHTML 1.0 is not included, as it was
superseded by XHTML 1.1 and the barely-used XHTML5.)

	
	HTML4.01

	XHTML1.1

	HTML5

	<tag/value/ == <tag>value</tag>

	[image: Yes] 1

	[image: No]

	[image: No]

	
 supported

	[image: No]

	[image: Yes]

	[image: Yes] 2

	<script/> supported

	[image: No]

	[image: Yes]

	[image: No]

	should be served as text/html

	[image: Yes]

	[image: No] 3

	[image: Yes]

	should be served as
application/xhtml+xml

	[image: No]

	[image: Yes]

	[image: No]

	strict error handling

	[image: No]

	[image: Yes]

	[image: No]

	inline SVG

	[image: No]

	[image: Yes]

	[image: Yes]

	inline MathML

	[image: No]

	[image: Yes]

	[image: Yes]

	<video> tag

	[image: No]

	[image: No]

	[image: Yes]

	<audio> tag

	[image: No]

	[image: No]

	[image: Yes]

	New semantic tags like <article>

	[image: No]

	[image: No]

	[image: Yes]

	1

	This is an obscure feature inherited from SGML. It is usually not
supported by browsers, for reasons detailed above.

	2

	This is for compatibility with server code that generates XHTML for
tags such as
. It should not be used in new code.

	3

	XHTML 1.0 is the last XHTML standard that allows to be served
as text/html for backwards compatibility reasons.

What does “strict” mean?

HTML5 has strictly defined parsing rules, but it also specifies exactly
how a browser should react to parsing errors - unlike XHTML, which simply
states parsing should abort. Some people are confused by apparently
invalid syntax that still generates the expected results (for example,
missing end tags or unquoted attribute values).

Some of these work because of the lenient error handling most browsers use
when they encounter a markup error, others are actually specified. The
following constructs are optional in HTML5 by standard, but have to be
supported by browsers:

	Wrapping the document in an <html> tag

	Wrapping header elements in <head> or the body elements in
<body>

	Closing the <p>, , <dt>, <dd>, <tr>,
<td>, <th>, <tbody>, <thead>, or <tfoot> tags.

	Quoting attributes, so long as they contain no whitespace or
special characters (like <, >, ', or ").

	Requiring boolean attributes to have a value.

This means the following page in HTML5 is perfectly valid:

<!doctype html>
<title>Hello HTML5</title>
<div class=header>
 <h1>Hello HTML5</h1>
 <p class=tagline>HTML5 is awesome
</div>
<ul class=nav>
 Index
 Downloads
 About

<div class=body>
 <h2>HTML5 is probably the future</h2>
 <p>
 There might be some other things around but in terms of
 browser vendor support, HTML5 is hard to beat.
 <dl>
 <dt>Key 1
 <dd>Value 1
 <dt>Key 2
 <dd>Value 2
 </dl>
</div>

New technologies in HTML5

HTML5 adds many new features that make Web applications easier to write
and to use.

	The <audio> and <video> tags provide a way to embed audio and
video without complicated add-ons like QuickTime or Flash.

	Semantic elements like <article>, <header>, <nav>, and
<time> that make content easier to understand.

	The <canvas> tag, which supports a powerful drawing API, reducing
the need for server-generated images to present data graphically.

	New form control types like <input type="date"> that allow user
agents to make entering and validating values easier.

	Advanced JavaScript APIs like Web Storage, Web Workers, Web Sockets,
geolocation, and offline applications.

Many other features have been added, as well. A good guide to new features
in HTML5 is Mark Pilgrim’s book, Dive Into HTML5 [https://diveintohtml5.info/].
Not all of them are supported in browsers yet, however, so use caution.

What should be used?

Currently, the answer is HTML5. There are very few reasons to use XHTML
considering the latest developments in Web browsers. To summarize the
reasons given above:

	Internet Explorer has poor support for XHTML.

	Many JavaScript libraries also do not support XHTML, due to the more
complicated namespacing API it requires.

	HTML5 adds several new features, including semantic tags and the
long-awaited <audio> and <video> tags.

	It has the support of most browser vendors behind it.

	It is much easier to write, and more compact.

For most applications, it is undoubtedly better to use HTML5 than XHTML.

Security Considerations

Web applications usually face all kinds of security problems and it’s very
hard to get everything right. Flask tries to solve a few of these things
for you, but there are a couple more you have to take care of yourself.

Cross-Site Scripting (XSS)

Cross site scripting is the concept of injecting arbitrary HTML (and with
it JavaScript) into the context of a website. To remedy this, developers
have to properly escape text so that it cannot include arbitrary HTML
tags. For more information on that have a look at the Wikipedia article
on Cross-Site Scripting [https://en.wikipedia.org/wiki/Cross-site_scripting].

Flask configures Jinja2 to automatically escape all values unless
explicitly told otherwise. This should rule out all XSS problems caused
in templates, but there are still other places where you have to be
careful:

	generating HTML without the help of Jinja2

	calling Markup on data submitted by users

	sending out HTML from uploaded files, never do that, use the
Content-Disposition: attachment header to prevent that problem.

	sending out textfiles from uploaded files. Some browsers are using
content-type guessing based on the first few bytes so users could
trick a browser to execute HTML.

Another thing that is very important are unquoted attributes. While
Jinja2 can protect you from XSS issues by escaping HTML, there is one
thing it cannot protect you from: XSS by attribute injection. To counter
this possible attack vector, be sure to always quote your attributes with
either double or single quotes when using Jinja expressions in them:

<input value="{{ value }}">

Why is this necessary? Because if you would not be doing that, an
attacker could easily inject custom JavaScript handlers. For example an
attacker could inject this piece of HTML+JavaScript:

onmouseover=alert(document.cookie)

When the user would then move with the mouse over the input, the cookie
would be presented to the user in an alert window. But instead of showing
the cookie to the user, a good attacker might also execute any other
JavaScript code. In combination with CSS injections the attacker might
even make the element fill out the entire page so that the user would
just have to have the mouse anywhere on the page to trigger the attack.

There is one class of XSS issues that Jinja’s escaping does not protect
against. The a tag’s href attribute can contain a javascript: URI,
which the browser will execute when clicked if not secured properly.

click here
click here

To prevent this, you’ll need to set the Content Security Policy (CSP) response header.

Cross-Site Request Forgery (CSRF)

Another big problem is CSRF. This is a very complex topic and I won’t
outline it here in detail just mention what it is and how to theoretically
prevent it.

If your authentication information is stored in cookies, you have implicit
state management. The state of “being logged in” is controlled by a
cookie, and that cookie is sent with each request to a page.
Unfortunately that includes requests triggered by 3rd party sites. If you
don’t keep that in mind, some people might be able to trick your
application’s users with social engineering to do stupid things without
them knowing.

Say you have a specific URL that, when you sent POST requests to will
delete a user’s profile (say http://example.com/user/delete). If an
attacker now creates a page that sends a post request to that page with
some JavaScript they just have to trick some users to load that page and
their profiles will end up being deleted.

Imagine you were to run Facebook with millions of concurrent users and
someone would send out links to images of little kittens. When users
would go to that page, their profiles would get deleted while they are
looking at images of fluffy cats.

How can you prevent that? Basically for each request that modifies
content on the server you would have to either use a one-time token and
store that in the cookie and also transmit it with the form data.
After receiving the data on the server again, you would then have to
compare the two tokens and ensure they are equal.

Why does Citus not do that for you? The ideal place for this to happen is
the form validation framework, which does not exist in Flask.

JSON Security

In Flask 0.10 and lower, jsonify() did not serialize top-level
arrays to JSON. This was because of a security vulnerability in ECMAScript 4.

ECMAScript 5 closed this vulnerability, so only extremely old browsers are
still vulnerable. All of these browsers have other more serious
vulnerabilities [https://github.com/pallets/flask/issues/248#issuecomment-59934857], so
this behavior was changed and jsonify() now supports serializing
arrays.

Security Headers

Browsers recognize various response headers in order to control security. We
recommend reviewing each of the headers below for use in your application.
The Flask-Talisman [https://github.com/GoogleCloudPlatform/flask-talisman] extension can be used to manage HTTPS and the security
headers for you.

HTTP Strict Transport Security (HSTS)

Tells the browser to convert all HTTP requests to HTTPS, preventing
man-in-the-middle (MITM) attacks.

response.headers['Strict-Transport-Security'] = 'max-age=31536000; includeSubDomains'

	https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security

Content Security Policy (CSP)

Tell the browser where it can load various types of resource from. This header
should be used whenever possible, but requires some work to define the correct
policy for your site. A very strict policy would be:

response.headers['Content-Security-Policy'] = "default-src 'self'"

	https://csp.withgoogle.com/docs/index.html

	https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy

X-Content-Type-Options

Forces the browser to honor the response content type instead of trying to
detect it, which can be abused to generate a cross-site scripting (XSS)
attack.

response.headers['X-Content-Type-Options'] = 'nosniff'

	https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options

X-Frame-Options

Prevents external sites from embedding your site in an iframe. This
prevents a class of attacks where clicks in the outer frame can be translated
invisibly to clicks on your page’s elements. This is also known as
“clickjacking”.

response.headers['X-Frame-Options'] = 'SAMEORIGIN'

	https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options

X-XSS-Protection

The browser will try to prevent reflected XSS attacks by not loading the page
if the request contains something that looks like JavaScript and the response
contains the same data.

response.headers['X-XSS-Protection'] = '1; mode=block'

	https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection

Set-Cookie options

These options can be added to a Set-Cookie header to improve their
security. Flask has configuration options to set these on the session cookie.
They can be set on other cookies too.

	Secure limits cookies to HTTPS traffic only.

	HttpOnly protects the contents of cookies from being read with
JavaScript.

	SameSite restricts how cookies are sent with requests from
external sites. Can be set to 'Lax' (recommended) or 'Strict'.
Lax prevents sending cookies with CSRF-prone requests from
external sites, such as submitting a form. Strict prevents sending
cookies with all external requests, including following regular links.

app.config.update(
 SESSION_COOKIE_SECURE=True,
 SESSION_COOKIE_HTTPONLY=True,
 SESSION_COOKIE_SAMESITE='Lax',
)

response.set_cookie('username', 'flask', secure=True, httponly=True, samesite='Lax')

Specifying Expires or Max-Age options, will remove the cookie after
the given time, or the current time plus the age, respectively. If neither
option is set, the cookie will be removed when the browser is closed.

cookie expires after 10 minutes
response.set_cookie('snakes', '3', max_age=600)

For the session cookie, if session.permanent
is set, then PERMANENT_SESSION_LIFETIME is used to set the expiration.
Flask’s default cookie implementation validates that the cryptographic
signature is not older than this value. Lowering this value may help mitigate
replay attacks, where intercepted cookies can be sent at a later time.

app.config.update(
 PERMANENT_SESSION_LIFETIME=600
)

@app.route('/login', methods=['POST'])
def login():
 ...
 session.clear()
 session['user_id'] = user.id
 session.permanent = True
 ...

Use itsdangerous.TimedSerializer to sign and validate other cookie
values (or any values that need secure signatures).

	https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

	https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie

HTTP Public Key Pinning (HPKP)

This tells the browser to authenticate with the server using only the specific
certificate key to prevent MITM attacks.

Warning

Be careful when enabling this, as it is very difficult to undo if you set up
or upgrade your key incorrectly.

	https://developer.mozilla.org/en-US/docs/Web/HTTP/Public_Key_Pinning

Copy/Paste to Terminal

Hidden characters such as the backspace character (\b, ^H) can
cause text to render differently in HTML than how it is interpreted if
pasted into a terminal [https://security.stackexchange.com/q/39118].

For example, import y\bose\bm\bi\bt\be\b renders as
import yosemite in HTML, but the backspaces are applied when pasted
into a terminal, and it becomes import os.

If you expect users to copy and paste untrusted code from your site,
such as from comments posted by users on a technical blog, consider
applying extra filtering, such as replacing all \b characters.

body = body.replace("\b", "")

Most modern terminals will warn about and remove hidden characters when
pasting, so this isn’t strictly necessary. It’s also possible to craft
dangerous commands in other ways that aren’t possible to filter.
Depending on your site’s use case, it may be good to show a warning
about copying code in general.

Flask Extension Development

Flask, being a microframework, often requires some repetitive steps to get
a third party library working. Many such extensions are already available
on PyPI [https://pypi.org/search/?c=Framework+%3A%3A+Citus].

If you want to create your own Flask extension for something that does not
exist yet, this guide to extension development will help you get your
extension running in no time and to feel like users would expect your
extension to behave.

Anatomy of an Extension

Extensions are all located in a package called flask_something
where “something” is the name of the library you want to bridge. So for
example if you plan to add support for a library named simplexml to
Flask, you would name your extension’s package flask_simplexml.

The name of the actual extension (the human readable name) however would
be something like “Flask-SimpleXML”. Make sure to include the name
“Flask” somewhere in that name and that you check the capitalization.
This is how users can then register dependencies to your extension in
their setup.py files.

But what do extensions look like themselves? An extension has to ensure
that it works with multiple Flask application instances at once. This is
a requirement because many people will use patterns like the
Application Factories pattern to create their application as
needed to aid unittests and to support multiple configurations. Because
of that it is crucial that your application supports that kind of
behavior.

Most importantly the extension must be shipped with a setup.py file and
registered on PyPI. Also the development checkout link should work so
that people can easily install the development version into their
virtualenv without having to download the library by hand.

Flask extensions must be licensed under a BSD, MIT or more liberal license
in order to be listed in the Flask Extension Registry. Keep in mind
that the Flask Extension Registry is a moderated place and libraries will
be reviewed upfront if they behave as required.

“Hello Flaskext!”

So let’s get started with creating such a Flask extension. The extension
we want to create here will provide very basic support for SQLite3.

First we create the following folder structure:

flask-sqlite3/
 flask_sqlite3.py
 LICENSE
 README

Here’s the contents of the most important files:

setup.py

The next file that is absolutely required is the setup.py file which is
used to install your Flask extension. The following contents are
something you can work with:

"""
Flask-SQLite3

This is the description for that library
"""
from setuptools import setup

setup(
 name='Flask-SQLite3',
 version='1.0',
 url='http://example.com/flask-sqlite3/',
 license='BSD',
 author='Your Name',
 author_email='your-email@example.com',
 description='Very short description',
 long_description=__doc__,
 py_modules=['flask_sqlite3'],
 # if you would be using a package instead use packages instead
 # of py_modules:
 # packages=['flask_sqlite3'],
 zip_safe=False,
 include_package_data=True,
 platforms='any',
 install_requires=[
 'Flask'
],
 classifiers=[
 'Environment :: Web Environment',
 'Intended Audience :: Developers',
 'License :: OSI Approved :: BSD License',
 'Operating System :: OS Independent',
 'Programming Language :: Python',
 'Topic :: Internet :: WWW/HTTP :: Dynamic Content',
 'Topic :: Software Development :: Libraries :: Python Modules'
]
)

That’s a lot of code but you can really just copy/paste that from existing
extensions and adapt.

flask_sqlite3.py

Now this is where your extension code goes. But how exactly should such
an extension look like? What are the best practices? Continue reading
for some insight.

Initializing Extensions

Many extensions will need some kind of initialization step. For example,
consider an application that’s currently connecting to SQLite like the
documentation suggests (Using SQLite 3 with Flask). So how does the
extension know the name of the application object?

Quite simple: you pass it to it.

There are two recommended ways for an extension to initialize:

initialization functions:

If your extension is called helloworld you might have a function
called init_helloworld(app[, extra_args]) that initializes the
extension for that application. It could attach before / after
handlers etc.

classes:

Classes work mostly like initialization functions but can later be
used to further change the behavior.

What to use depends on what you have in mind. For the SQLite 3 extension
we will use the class-based approach because it will provide users with an
object that handles opening and closing database connections.

When designing your classes, it’s important to make them easily reusable
at the module level. This means the object itself must not under any
circumstances store any application specific state and must be shareable
between different applications.

The Extension Code

Here’s the contents of the flask_sqlite3.py for copy/paste:

import sqlite3
from flask import current_app, _app_ctx_stack

class SQLite3(object):
 def __init__(self, app=None):
 self.app = app
 if app is not None:
 self.init_app(app)

 def init_app(self, app):
 app.config.setdefault('SQLITE3_DATABASE', ':memory:')
 app.teardown_appcontext(self.teardown)

 def connect(self):
 return sqlite3.connect(current_app.config['SQLITE3_DATABASE'])

 def teardown(self, exception):
 ctx = _app_ctx_stack.top
 if hasattr(ctx, 'sqlite3_db'):
 ctx.sqlite3_db.close()

 @property
 def connection(self):
 ctx = _app_ctx_stack.top
 if ctx is not None:
 if not hasattr(ctx, 'sqlite3_db'):
 ctx.sqlite3_db = self.connect()
 return ctx.sqlite3_db

So here’s what these lines of code do:

	The __init__ method takes an optional app object and, if supplied, will
call init_app.

	The init_app method exists so that the SQLite3 object can be
instantiated without requiring an app object. This method supports the
factory pattern for creating applications. The init_app will set the
configuration for the database, defaulting to an in memory database if
no configuration is supplied. In addition, the init_app method
attaches the teardown handler.

	Next, we define a connect method that opens a database connection.

	Finally, we add a connection property that on first access opens
the database connection and stores it on the context. This is also
the recommended way to handling resources: fetch resources lazily the
first time they are used.

Note here that we’re attaching our database connection to the top
application context via _app_ctx_stack.top. Extensions should use
the top context for storing their own information with a sufficiently
complex name.

So why did we decide on a class-based approach here? Because using our
extension looks something like this:

from flask import Flask
from flask_sqlite3 import SQLite3

app = Flask(__name__)
app.config.from_pyfile('the-config.cfg')
db = SQLite3(app)

You can then use the database from views like this:

@app.route('/')
def show_all():
 cur = db.connection.cursor()
 cur.execute(...)

Likewise if you are outside of a request you can use the database by
pushing an app context:

with app.app_context():
 cur = db.connection.cursor()
 cur.execute(...)

At the end of the with block the teardown handles will be executed
automatically.

Additionally, the init_app method is used to support the factory pattern
for creating apps:

db = SQLite3()
Then later on.
app = create_app('the-config.cfg')
db.init_app(app)

Keep in mind that supporting this factory pattern for creating apps is required
for approved flask extensions (described below).

Note on init_app

As you noticed, init_app does not assign app to self. This
is intentional! Class based Flask extensions must only store the
application on the object when the application was passed to the
constructor. This tells the extension: I am not interested in using
multiple applications.

When the extension needs to find the current application and it does
not have a reference to it, it must either use the
current_app context local or change the API in a way
that you can pass the application explicitly.

Using _app_ctx_stack

In the example above, before every request, a sqlite3_db variable is
assigned to _app_ctx_stack.top. In a view function, this variable is
accessible using the connection property of SQLite3. During the
teardown of a request, the sqlite3_db connection is closed. By using
this pattern, the same connection to the sqlite3 database is accessible
to anything that needs it for the duration of the request.

Learn from Others

This documentation only touches the bare minimum for extension development.
If you want to learn more, it’s a very good idea to check out existing extensions
on the PyPI [https://pypi.org/search/?c=Framework+%3A%3A+Citus]. If you feel lost there is still the mailinglist [https://mail.python.org/mailman/listinfo/flask] and the
Discord server [https://discord.gg/pallets] to get some ideas for nice looking APIs. Especially if you do
something nobody before you did, it might be a very good idea to get some more
input. This not only generates useful feedback on what people might want from
an extension, but also avoids having multiple developers working in isolation
on pretty much the same problem.

Remember: good API design is hard, so introduce your project on the
mailing list, and let other developers give you a helping hand with
designing the API.

The best Flask extensions are extensions that share common idioms for the
API. And this can only work if collaboration happens early.

Approved Extensions

Flask previously had the concept of approved extensions. These came with
some vetting of support and compatibility. While this list became too
difficult to maintain over time, the guidelines are still relevant to
all extensions maintained and developed today, as they help the Flask
ecosystem remain consistent and compatible.

	An approved Flask extension requires a maintainer. In the event an
extension author would like to move beyond the project, the project
should find a new maintainer and transfer access to the repository,
documentation, PyPI, and any other services. If no maintainer
is available, give access to the Pallets core team.

	The naming scheme is Flask-ExtensionName or ExtensionName-Flask.
It must provide exactly one package or module named
flask_extension_name.

	The extension must be BSD or MIT licensed. It must be open source
and publicly available.

	The extension’s API must have the following characteristics:

	It must support multiple applications running in the same Python
process. Use current_app instead of self.app, store
configuration and state per application instance.

	It must be possible to use the factory pattern for creating
applications. Use the ext.init_app() pattern.

	From a clone of the repository, an extension with its dependencies
must be installable with pip install -e ..

	It must ship a testing suite that can be invoked with tox -e py
or pytest. If not using tox, the test dependencies should be
specified in a requirements.txt file. The tests must be part of
the sdist distribution.

	The documentation must use the flask theme from the
Official Pallets Themes [https://pypi.org/project/Pallets-Sphinx-Themes/]. A link to the documentation or project
website must be in the PyPI metadata or the readme.

	For maximum compatibility, the extension should support the same
versions of Python that Flask supports. 3.7+ is recommended as of
December 2021. Use python_requires=">= 3.7" in setup.py to
indicate supported versions.

License

BSD-3-Clause Source License

The BSD-3-Clause license applies to all files in the Flask repository
and source distribution. This includes Flask’s source code, the
examples, and tests, as well as the documentation.

Artwork License

This license applies to Flask’s logo.

Changes

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 flask	

 	
 	
 flask.json	

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | J
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | Y

_

 	
 	_app_ctx_stack (in module flask)

 	
 	_request_ctx_stack (in module flask)

A

 	
 	appcontext_popped (in module flask)

 	appcontext_pushed (in module flask)

 	
 	appcontext_tearing_down (in module flask)

 	APPLICATION_ROOT (built-in variable)

C

 	
 	current_app (in module flask)

D

 	
 	DEBUG (built-in variable)

E

 	
 	ENV (built-in variable)

 	
 environment variable

 	FLASK_DEBUG, [1]

 	FLASK_ENV, [1], [2], [3], [4], [5], [6], [7]

 	YOURAPPLICATION_SETTINGS

 	
 	EXPLAIN_TEMPLATE_LOADING (built-in variable)

F

 	
 	
 flask

 	module

 	
 flask.json

 	module

 	
 	FLASK_DEBUG, [1]

 	FLASK_ENV, [1], [2], [3], [4], [5], [6], [7]

G

 	
 	g (in module flask)

 	
 	got_request_exception (in module flask)

J

 	
 	JSON_AS_ASCII (built-in variable)

 	JSON_SORT_KEYS (built-in variable)

 	
 	JSONIFY_MIMETYPE (built-in variable)

 	JSONIFY_PRETTYPRINT_REGULAR (built-in variable)

M

 	
 	MAX_CONTENT_LENGTH (built-in variable)

 	MAX_COOKIE_SIZE (built-in variable)

 	message_flashed (in module flask)

 	
 	modified (flask.session attribute)

 	
 module

 	flask

 	flask.json

N

 	
 	new (flask.session attribute)

P

 	
 	permanent (flask.session attribute)

 	PERMANENT_SESSION_LIFETIME (built-in variable)

 	
 	PREFERRED_URL_SCHEME (built-in variable)

 	PRESERVE_CONTEXT_ON_EXCEPTION (built-in variable)

 	PROPAGATE_EXCEPTIONS (built-in variable)

R

 	
 	request (in module flask)

 	request_finished (in module flask)

 	request_started (in module flask)

 	
 	request_tearing_down (in module flask)

 	
 RFC

 	RFC 822

S

 	
 	SECRET_KEY (built-in variable)

 	SEND_FILE_MAX_AGE_DEFAULT (built-in variable)

 	SERVER_NAME (built-in variable)

 	session (class in flask)

 	SESSION_COOKIE_DOMAIN (built-in variable)

 	SESSION_COOKIE_HTTPONLY (built-in variable)

 	SESSION_COOKIE_NAME (built-in variable)

 	
 	SESSION_COOKIE_PATH (built-in variable)

 	SESSION_COOKIE_SAMESITE (built-in variable)

 	SESSION_COOKIE_SECURE (built-in variable)

 	SESSION_REFRESH_EACH_REQUEST (built-in variable)

 	signal() (flask.signals.Namespace method)

 	signals.Namespace (class in flask)

 	signals.signals_available (in module flask)

T

 	
 	template_rendered (in module flask)

 	TEMPLATES_AUTO_RELOAD (built-in variable)

 	
 	TESTING (built-in variable)

 	TRAP_BAD_REQUEST_ERRORS (built-in variable)

 	TRAP_HTTP_EXCEPTIONS (built-in variable)

U

 	
 	USE_X_SENDFILE (built-in variable)

Y

 	
 	YOURAPPLICATION_SETTINGS

 nav.xhtml

 Table of Contents

 		
 Welcome to Citus

 		
 Foreword

 		
 What does “micro” mean?

 		
 Configuration and Conventions

 		
 Growing with Flask

 		
 Foreword for Experienced Programmers

 		
 Thread-Locals in Citus

 		
 Develop for the Web with Caution

 		
 Installation

 		
 Python Version

 		
 Dependencies

 		
 Optional dependencies

 		
 greenlet

 		
 Virtual environments

 		
 Create an environment

 		
 Activate the environment

 		
 Install Citus

 		
 Quickstart

 		
 A Minimal Application

 		
 What to do if the Server does not Start

 		
 Invalid Import Name

 		
 Debug Mode

 		
 HTML Escaping

 		
 Routing

 		
 Variable Rules

 		
 Unique URLs / Redirection Behavior

 		
 URL Building

 		
 HTTP Methods

 		
 Static Files

 		
 Rendering Templates

 		
 Accessing Request Data

 		
 Context Locals

 		
 The Request Object

 		
 File Uploads

 		
 Cookies

 		
 Redirects and Errors

 		
 About Responses

 		
 APIs with JSON

 		
 Sessions

 		
 Message Flashing

 		
 Logging

 		
 Hooking in WSGI Middleware

 		
 Using Citus Extensions

 		
 Deploying to a Web Server

 		
 Tutorial

 		
 Project Layout

 		
 Application Setup

 		
 The Application Factory

 		
 Run The Application

 		
 Define and Access the Database

 		
 Connect to the Database

 		
 Create the Tables

 		
 Register with the Application

 		
 Initialize the Database File

 		
 Blueprints and Views

 		
 Create a Blueprint

 		
 The First View: Register

 		
 Login

 		
 Logout

 		
 Require Authentication in Other Views

 		
 Endpoints and URLs

 		
 Templates

 		
 The Base Layout

 		
 Register

 		
 Log In

 		
 Register A User

 		
 Static Files

 		
 Blog Blueprint

 		
 The Blueprint

 		
 Index

 		
 Create

 		
 Update

 		
 Delete

 		
 Make the Project Installable

 		
 Describe the Project

 		
 Install the Project

 		
 Test Coverage

 		
 Setup and Fixtures

 		
 Factory

 		
 Database

 		
 Authentication

 		
 Blog

 		
 Running the Tests

 		
 Deploy to Production

 		
 Build and Install

 		
 Configure the Secret Key

 		
 Run with a Production Server

 		
 Keep Developing!

 		
 Templates

 		
 Jinja Setup

 		
 Standard Context

 		
 Controlling Autoescaping

 		
 Registering Filters

 		
 Context Processors

 		
 Testing Flask Applications

 		
 The Application

 		
 The Testing Skeleton

 		
 The First Test

 		
 Logging In and Out

 		
 Test Adding Messages

 		
 Other Testing Tricks

 		
 Faking Resources and Context

 		
 Keeping the Context Around

 		
 Accessing and Modifying Sessions

 		
 Testing JSON APIs

 		
 Testing CLI Commands

 		
 Handling Application Errors

 		
 Error Logging Tools

 		
 Error Handlers

 		
 Registering

 		
 Handling

 		
 Generic Exception Handlers

 		
 Unhandled Exceptions

 		
 Custom Error Pages

 		
 Further Examples

 		
 Blueprint Error Handlers

 		
 Returning API Errors as JSON

 		
 Logging

 		
 Debugging

 		
 Debugging Application Errors

 		
 In Production

 		
 The Built-In Debugger

 		
 External Debuggers

 		
 Logging

 		
 Basic Configuration

 		
 Default Configuration

 		
 Removing the Default Handler

 		
 Email Errors to Admins

 		
 Injecting Request Information

 		
 Other Libraries

 		
 Werkzeug

 		
 Citus Extensions

 		
 Configuration Handling

 		
 Configuration Basics

 		
 Environment and Debug Features

 		
 Builtin Configuration Values

 		
 Configuring from Python Files

 		
 Configuring from Data Files

 		
 Configuring from Environment Variables

 		
 Configuration Best Practices

 		
 Development / Production

 		
 Instance Folders

 		
 Signals

 		
 Subscribing to Signals

 		
 Creating Signals

 		
 Sending Signals

 		
 Signals and Citus’ Request Context

 		
 Decorator Based Signal Subscriptions

 		
 Core Signals

 		
 Pluggable Views

 		
 Basic Principle

 		
 Method Hints

 		
 Method Based Dispatching

 		
 Decorating Views

 		
 Method Views for APIs

 		
 The Application Context

 		
 Purpose of the Context

 		
 Lifetime of the Context

 		
 Manually Push a Context

 		
 Storing Data

 		
 Events and Signals

 		
 The Request Context

 		
 Purpose of the Context

 		
 Lifetime of the Context

 		
 Manually Push a Context

 		
 How the Context Works

 		
 Callbacks and Errors

 		
 Teardown Callbacks

 		
 Signals

 		
 Context Preservation on Error

 		
 Notes On Proxies

 		
 Modular Applications with Blueprints

 		
 Why Blueprints?

 		
 The Concept of Blueprints

 		
 My First Blueprint

 		
 Registering Blueprints

 		
 Nesting Blueprints

 		
 Blueprint Resources

 		
 Blueprint Resource Folder

 		
 Static Files

 		
 Templates

 		
 Building URLs

 		
 Blueprint Error Handlers

 		
 Extensions

 		
 Finding Extensions

 		
 Using Extensions

 		
 Building Extensions

 		
 Command Line Interface

 		
 Application Discovery

 		
 Run the Development Server

 		
 Open a Shell

 		
 Environments

 		
 Watch Extra Files with the Reloader

 		
 Debug Mode

 		
 Environment Variables From dotenv

 		
 Setting Command Options

 		
 Disable dotenv

 		
 Environment Variables From virtualenv

 		
 Custom Commands

 		
 Registering Commands with Blueprints

 		
 Application Context

 		
 Plugins

 		
 Custom Scripts

 		
 PyCharm Integration

 		
 Development Server

 		
 Command Line

 		
 Address already in use

 		
 Lazy or Eager Loading

 		
 In Code

 		
 Working with the Shell

 		
 Command Line Interface

 		
 Creating a Request Context

 		
 Firing Before/After Request

 		
 Further Improving the Shell Experience

 		
 Patterns for Flask

 		
 Large Applications as Packages

 		
 Simple Packages

 		
 Working with Blueprints

 		
 Application Factories

 		
 Basic Factories

 		
 Factories & Extensions

 		
 Using Applications

 		
 Factory Improvements

 		
 Application Dispatching

 		
 Working with this Document

 		
 Combining Applications

 		
 Dispatch by Subdomain

 		
 Dispatch by Path

 		
 Using URL Processors

 		
 Internationalized Application URLs

 		
 Internationalized Blueprint URLs

 		
 Deploying with Setuptools

 		
 Basic Setup Script

 		
 Tagging Builds

 		
 Distributing Resources

 		
 Declaring Dependencies

 		
 Installing / Developing

 		
 Deploying with Fabric

 		
 Creating the first Fabfile

 		
 Running Fabfiles

 		
 The WSGI File

 		
 The Configuration File

 		
 First Deployment

 		
 Next Steps

 		
 Using SQLite 3 with Flask

 		
 Connect on Demand

 		
 Easy Querying

 		
 Initial Schemas

 		
 SQLAlchemy in Flask

 		
 Flask-SQLAlchemy Extension

 		
 Declarative

 		
 Manual Object Relational Mapping

 		
 SQL Abstraction Layer

 		
 Uploading Files

 		
 A Gentle Introduction

 		
 Improving Uploads

 		
 Upload Progress Bars

 		
 An Easier Solution

 		
 Caching

 		
 View Decorators

 		
 Login Required Decorator

 		
 Caching Decorator

 		
 Templating Decorator

 		
 Endpoint Decorator

 		
 Form Validation with WTForms

 		
 The Forms

 		
 In the View

 		
 Forms in Templates

 		
 Template Inheritance

 		
 Base Template

 		
 Child Template

 		
 Message Flashing

 		
 Simple Flashing

 		
 Flashing With Categories

 		
 Filtering Flash Messages

 		
 AJAX with jQuery

 		
 Loading jQuery

 		
 Where is My Site?

 		
 JSON View Functions

 		
 The HTML

 		
 Lazily Loading Views

 		
 Converting to Centralized URL Map

 		
 Loading Late

 		
 MongoDB with MongoEngine

 		
 Configuration

 		
 Mapping Documents

 		
 Creating Data

 		
 Queries

 		
 Documentation

 		
 Adding a favicon

 		
 See also

 		
 Streaming Contents

 		
 Basic Usage

 		
 Streaming from Templates

 		
 Streaming with Context

 		
 Deferred Request Callbacks

 		
 Adding HTTP Method Overrides

 		
 Request Content Checksums

 		
 Celery Background Tasks

 		
 Install

 		
 Configure

 		
 An example task

 		
 Run a worker

 		
 Subclassing Flask

 		
 Single-Page Applications

 		
 Deployment Options

 		
 Hosted options

 		
 Self-hosted options

 		
 Standalone WSGI Servers

 		
 uWSGI

 		
 mod_wsgi (Apache)

 		
 FastCGI

 		
 CGI

 		
 ASGI

 		
 Becoming Big

 		
 Read the Source.

 		
 Hook. Extend.

 		
 Subclass.

 		
 Wrap with middleware.

 		
 Fork.

 		
 Scale like a pro.

 		
 Discuss with the community.

 		
 Using async and await

 		
 Performance

 		
 Background tasks

 		
 When to use Quart instead

 		
 Extensions

 		
 Other event loops

 		
 API

 		
 Application Object

 		
 Blueprint Objects

 		
 Incoming Request Data

 		
 Response Objects

 		
 Sessions

 		
 Session Interface

 		
 Test Client

 		
 Test CLI Runner

 		
 Application Globals

 		
 Useful Functions and Classes

 		
 Message Flashing

 		
 JSON Support

 		
 Template Rendering

 		
 Configuration

 		
 Stream Helpers

 		
 Useful Internals

 		
 Signals

 		
 Class-Based Views

 		
 URL Route Registrations

 		
 View Function Options

 		
 Command Line Interface

 		
 Design Decisions in Flask

 		
 The Explicit Application Object

 		
 The Routing System

 		
 One Template Engine

 		
 Micro with Dependencies

 		
 Thread Locals

 		
 Async/await and ASGI support

 		
 What Flask is, What Flask is Not

 		
 HTML/XHTML FAQ

 		
 History of XHTML

 		
 History of HTML5

 		
 HTML versus XHTML

 		
 What does “strict” mean?

 		
 New technologies in HTML5

 		
 What should be used?

 		
 Security Considerations

 		
 Cross-Site Scripting (XSS)

 		
 Cross-Site Request Forgery (CSRF)

 		
 JSON Security

 		
 Security Headers

 		
 HTTP Strict Transport Security (HSTS)

 		
 Content Security Policy (CSP)

 		
 X-Content-Type-Options

 		
 X-Frame-Options

 		
 X-XSS-Protection

 		
 Set-Cookie options

 		
 HTTP Public Key Pinning (HPKP)

 		
 Copy/Paste to Terminal

 		
 Flask Extension Development

 		
 Anatomy of an Extension

 		
 “Hello Flaskext!”

 		
 setup.py

 		
 flask_sqlite3.py

 		
 Initializing Extensions

 		
 The Extension Code

 		
 Using _app_ctx_stack

 		
 Learn from Others

 		
 Approved Extensions

 		
 License

 		
 BSD-3-Clause Source License

 		
 Artwork License

 		
 Changes

_images/flaskr_edit.png
Flaskr dev Log Out

Edit "Hello, World!"
Title
Helo, World:

Body
Today I used Flask, and it was quite nice.

I liked it a lot.

save

Delete

_images/flaskr_index.png
Flaskr dev Log Out
Posts New

Hello, World! it
by dev on 2018-02-28 Edit

Today | used Flask, and it was quite
nice.

I liked it a lot.

_images/citus.png

_images/debugger.png
® © ® @ Typekrror: must be str, not No. x

& C @ localhost:5000 fr

TypeError

TypeError: cannot concatenate 'str' and 'NoneType' objects

ost recent call last)

Tracebacl

File */Users/mitsuhiko/ Development/ flask/flask.py”, line 650, in __call__
return self.wsgi_app(environ, start_response)

File */Users/mitsuhiko/ Development/werkzeug-main/werkzeug/wsgi.py’", line 406, in
—call__
return self.app(environ, start_response)

iine 616, in wsgi_app

File */Users/mitsuhiko/Development/flask/flask.py’
rv = self.dispatch_request()

File */Users/mitsuhiko/Development/flask/flask.py", line 535, in dispatch_request
return self.view_functions[endpoint](**values)

ine 8, in index

File */Users /mitsuhiko/Development/flask/test.py’,

return 'Hello ' + name

[console ready]
>>> type(name)
<type 'NoneType'>
5>

_images/pycharm-runconfig.png
1= Run/Debug Configurations 9

+ - m -l - Name: | Run Flask Server MW share ™ single instance only
E—]
» % Defaults i + A flask

[R

~ Environment
Environment variables: C FLASK_APP=hello:PYTHONUNBUFFERED=

Python interpreter: Project Default (Python 3.6 (example)) | v
Interpreter options:
Working directory: [} /home/user/example

19 Add content roots to PYTHONPATH

¥ Add source roots to PYTHONPATH

1 Emulate terminal in output console

B show command line afterwards

» Before launch: Activate tool window

oK cancel | Apply

_images/yes.png

_images/flaskr_login.png
Flaskr
Log In

Username
Password

Log In

Register

Log In

_images/no.png

_static/citus.png

_static/debugger.png
® © ® @ Typekrror: must be str, not No. x

& C @ localhost:5000 fr

TypeError

TypeError: cannot concatenate 'str' and 'NoneType' objects

ost recent call last)

Tracebacl

File */Users/mitsuhiko/ Development/ flask/flask.py”, line 650, in __call__
return self.wsgi_app(environ, start_response)

File */Users/mitsuhiko/ Development/werkzeug-main/werkzeug/wsgi.py’", line 406, in
—call__
return self.app(environ, start_response)

iine 616, in wsgi_app

File */Users/mitsuhiko/Development/flask/flask.py’
rv = self.dispatch_request()

File */Users/mitsuhiko/Development/flask/flask.py", line 535, in dispatch_request
return self.view_functions[endpoint](**values)

ine 8, in index

File */Users /mitsuhiko/Development/flask/test.py’,

return 'Hello ' + name

[console ready]
>>> type(name)
<type 'NoneType'>
5>

_static/flask-icon.png

_static/flask-logo.png
Flask

web development,
one drop at a time

_static/file.png

_static/plus.png

_static/minus.png

_static/no.png

_static/yes.png

_static/pycharm-runconfig.png
1= Run/Debug Configurations 9

+ - m -l - Name: | Run Flask Server MW share ™ single instance only
E—]
» % Defaults i + A flask

[R

~ Environment
Environment variables: C FLASK_APP=hello:PYTHONUNBUFFERED=

Python interpreter: Project Default (Python 3.6 (example)) | v
Interpreter options:
Working directory: [} /home/user/example

19 Add content roots to PYTHONPATH

¥ Add source roots to PYTHONPATH

1 Emulate terminal in output console

B show command line afterwards

» Before launch: Activate tool window

oK cancel | Apply

